Skip to main content

Masked Face Detection Using Artificial Intelligent Techniques

  • Conference paper
  • First Online:
New Approaches for Multidimensional Signal Processing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 270))

Abstract

Nowadays, wearing a face mask is a vital routine in life, but threats are increasing in public due to the advantage of wearing face masks. Existing works do not perfectly detect the human face and also not possible to apply for different faces detection. To overwhelm this issue, in this paper we proposed real-time face mask detection. The proposed work consists of six steps: video acquisition and keyframes selection, data augmentation, facial parts segmentation, pixel-based feature extraction, Bag of Visual Words (BoVW) generation, and face mask detection. In the first step, a set of keyframes are selected using the histogram of gradient (HoG) algorithm. Secondly, data augmentation is involved with three steps as color normalization, illumination correction (parameterized CLAHE), and pose normalization (Angular Affine Transformation). In the third step, facial parts are segmented using the clustering approach i.e., Expectation Maximization with Gaussian Mixture Model (EM-GMM), in which facial regions are segmented into Eyes, Nose, Mouth, Chin, and Forehead. Then, CapsNet based Feature Extraction is performed using CapsNet approach, which performance is higher and lightweight model than the Yolo Tiny V2 and Yolo Tiny V3, and extracted features are constructed into Codebook by Hassanat Similarity with K-Nearest neighbor (H-M with KNN) algorithm. For mask detection, L2 distance function is used. Experiments conducted using Python IDLE 3.8 for the proposed model and also previous works as GMM with Deep learning (GMM + DL), Convolutional Neural Network (CNN) with VGGF, Yolo Tiny V2, and Yolo Tiny V3 in terms of various performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, V.C.C., Wong, S.-C., Chuang, V.W.M., So, S.Y.C., Chen, J.H.K., Sridhar, S., Yuen, K.-Y., et al.: The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. J. Infect. (2020)

    Google Scholar 

  2. Cabani, A., Hammoudi, K., Benhabiles, H., Melkemi, M.: MaskedFace-Net—a dataset of correctly/incorrectly masked face images in the context of COVID-19. Smart Health 100144 (2020)

    Google Scholar 

  3. Razavi, M., Alikhani, H., Janfaza, V., Sadeghi, B., Alikhani, E.: An automatic system to monitor the physical distance and face mask wearing of construction workers in COVID-19 pandemic (2021)

    Google Scholar 

  4. Ejaz, M.S., Islam, M.R.: Masked face recognition using convolutional neural network. In: 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI) (2019)

    Google Scholar 

  5. Meenpal, T., Balakrishnan, A., Verma, A.: Facial mask detection using semantic segmentation. In: 2019 4th International Conference on Computing, Communications and Security (ICCCS) (2019)

    Google Scholar 

  6. Bhuiyan, M.R., Khushbu, S.A., Islam, M.S.: A deep learning based assistive system to classify COVID-19 face mask for human safety with YOLOv3. In: 2020 11th international conference on computing, communication and networking technologies (ICCCNT) (2020)

    Google Scholar 

  7. Bu, W., Xiao, J., Zhou, C., Yang, M., Peng, C.: A cascade framework for masked face detection. In: 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM) (2017)

    Google Scholar 

  8. Joshi, A.S., Joshi, S.S., Kanahasabai, G., Kapil, R., Gupta, S.: Deep learning framework to detect face masks from video footage. In: 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), pp. 435–440 (2020)

    Google Scholar 

  9. Draughon, G., Sun, P., Lynch, J.: Implementation of a computer vision framework for tracking and visualizing face mask usage in urban environments. In: 2020 IEEE International Smart Cities Conference (ISC2), 1–8 (2020)

    Google Scholar 

  10. Kose, N., Dugelay, J.-L.: Mask spoofing in face recognition and countermeasures. Image Vis. Comput. 32(10), 779–789 (2014)

    Article  Google Scholar 

  11. Qezavati, H., Majidi, B., Manzuri, M.T.: Partially covered face detection in presence of headscarf for surveillance applications. In: 2019 4th International Conference on Pattern Recognition and Image Analysis (IPRIA), pp. 195–199 (2019)

    Google Scholar 

  12. Yuan, C., Yang, Q.: A dynamic face recognition deploy and control system based on deep learning. J. Residuals Sci. Technol. 13 (2016)

    Google Scholar 

  13. Engoor, S., Selvaraju, S., Christopher, H.S., Suryanarayanan, M.G., Ranganathan, B.: Effective emotion recognition from partially occluded facial images using deep learning (2020)

    Google Scholar 

  14. Salari, S.R., Rostami, H.: Pgu-face: a dataset of partially covered facial images. Data Brief 9, 288–291 (2016)

    Google Scholar 

  15. Song, L., Gong, D., Li, Z., Liu, C., Liu, W.: Occlusion robust face recognition based on mask learning W ith pairwise differential Siamese network. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 773–782 (2019)

    Google Scholar 

  16. Wang, Z., Wang, G., Huang, B., Xiong, Z., Hong, Q., Wu, H., Yi, P., Jiang, K., Wang, N., Pei, Y., Chen, H., Miao, Y., Huang, Z., Liang, J.: Masked face recognition dataset and application. ArXiv abs/2003.09093 (2020)

    Google Scholar 

  17. Nair, A., Potgantwar, A.: Masked face detection using the Viola Jones algorithm: a progressive approach for less time consumption. Int. J. Recent Contrib. Eng. Sci. IT 6, 4–14 (2018)

    Google Scholar 

  18. Ejaz, M.S., Islam, M.N., Sifatullah, M., Sarker, A.: Implementation of principal component analysis on masked and non-masked face recognition. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–5 (2019)

    Google Scholar 

  19. Hariri, W.: Efficient masked face recognition method during the COVID-19 pandemic (2020)

    Google Scholar 

  20. Dey, S.K., Howlader, A., Deb, C.: MobileNet mask: a multi-phase face mask detection model to prevent person-to-person transmission of SARS-CoV-2 (2021)

    Google Scholar 

  21. Loey, M., Manogaran, G., Taha, M., Khalifa, N.E.: Fighting against COVID-19: a novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection. Sustain. Cities Soc. 65, 102600 (2020)

    Article  Google Scholar 

  22. Nagrath, P., Jain, R., Madan, A., Arora, R., Kataria, P., Hemanth, J.D.: SSDMNV2: a real-time DNN-based face mask detection system using single shot multibox detector and MobileNetV2. Sustain. Cities Soc. (2020)

    Google Scholar 

  23. Chowdary, G.J., Punn, N.S., Sonbhadra, S.K., Agarwal, S.: Face mask detection using transfer learning of inceptionV3. ArXiv abs/2009.08369 (2020)

    Google Scholar 

  24. Sikandar, T., Samsudin, W.N.A.W., Rabbi, M.F., Ghazali, K.H.: An efficient method for detecting covered face scenarios in ATM surveillance camera. SN Comput. Sci. 1(3) (2020)

    Google Scholar 

  25. Loey, M., Manogaran, G., Taha, M., & Khalifa, N.: A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement 167, 108288 (2021)

    Google Scholar 

  26. Chen, Q., Sang, L.: Face-mask recognition for fraud prevention using gaussian mixture model. J. Vis. Commun. Image Representation 55 (2018)

    Google Scholar 

  27. Kim, M., Koo, J., Cho, S., Baek, N., Park, K.: Convolutional neural network-based periocular recognition in surveillance environments. IEEE Access 1–1 (2018)

    Google Scholar 

  28. Liu, D., Bellotto, N., Yue, S.: Deep spiking neural network for video-based disguise face recognition based on dynamic facial movements. IEEE Trans. Neural Netw. Learn. Syst. 1–10 (2019)

    Google Scholar 

  29. Ud Din, N., Javed, K., Bae, S., Yi, J.: A novel GAN-based network for unmasking of masked face. IEEE Access 8, 44276–44287 (2020)

    Article  Google Scholar 

  30. Zhao, Z., Kumar, A.: Improving periocular recognition by explicit attention to critical regions in deep neural network. IEEE Trans. Inf. Forensics Secur. 13(12), 2937–2952 (2018)

    Article  Google Scholar 

  31. Zhang, W., Zhao, X., Morvan, J.-M., Chen, L.: Improving shadow suppression for illumination robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1–1 (2018)

    Google Scholar 

  32. l-Shaibani, B.: A new fast local Laplacian completed local ternary count (FLL-CLTC) for facial image classification. IEEE Access 8, 98244–98254 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund of Bulgaria: KP-06-H27/16 Development of efficient methods and algorithms for tensor-based processing and analysis of multidimensional images with application in interdisciplinary areas, National Science Foundation under Award No. OIA-1946391(DART) and NSA grant NCAE-C Cyber Curriculum and Research 2020 Program, NCAEC-003-3030

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariofanna Milanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasiri, E., Milanova, M., Nasiri, A. (2022). Masked Face Detection Using Artificial Intelligent Techniques. In: Kountchev, R., Mironov, R., Nakamatsu, K. (eds) New Approaches for Multidimensional Signal Processing. Smart Innovation, Systems and Technologies, vol 270. Springer, Singapore. https://doi.org/10.1007/978-981-16-8558-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8558-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8557-6

  • Online ISBN: 978-981-16-8558-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics