Skip to main content

The Effect of Friction Induced Noise, Vibration, Wear and Acoustical Behavior on Rough Surface: A Review on Industrial Perspective

  • Chapter
  • First Online:
Advances in Engine Tribology

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 538 Accesses

Abstract

This paper presents in-depth review on the influence of friction, noise, vibration and acoustical behavior and their relationship with different approaches in past. The interdependencies and effect of friction induced noise, vibration and acoustical behavior are analyzed on the rough surface at different asperitical level. The origination of frictional (noise, vibration, acoustical behavior), its dependencies on rough surface under different wear conditions are critically reviewed. The review concludes that an analytical and computational modelling approach is necessary to study the effect of friction induced noise, vibration and acoustical behavior on the rough surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelounis HB, Bot AL, Perret-Liaudet J, Zahouani H (2010) An experimental study on roughness noise of dry rough flat surfaces. Wear 268(1):335–345

    Article  Google Scholar 

  • Abdelounis HB, Zahouani H, Bot AL, Perret-Liaudet J, Tkaya MB (2011) Numerical simulation of friction noise. Wear 271(3):621–624

    Article  Google Scholar 

  • Akay (2002) Acoustics of friction. J Acoust Soc Am 111(4):1525–1548

    Google Scholar 

  • Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988

    Article  Google Scholar 

  • Archard JF (1959) The temperature of rubbing surfaces. Wear 2(6):438–455

    Article  Google Scholar 

  • Archard JF, Hirst W (1956) The wear of metals under unlubricated conditions. Proc R Soc Lond A 236(1206):397–410

    Article  Google Scholar 

  • Bartolomeo MD, Lacerra G, Baillet L, Chatelet E, Massi F (2017) Parametrical experimental and numerical analysis on friction-induced vibrations by a simple frictional system. Tribol Int 112:47–57

    Article  Google Scholar 

  • Barwell FT (1958) Wear of metals. Wear 1(4):317–332

    Article  Google Scholar 

  • Bayer RG (1976) Selection and use of wear tests for metals. ASTM International, West Conshohocken (USA)

    Google Scholar 

  • Ben Abdelounis H, Le Bot A, Perret-Liaudet J (2010) An experimental study on roughness noise of dry rough flat surfaces. Wear 368:335–345

    Article  Google Scholar 

  • Benabdallah HS, Aguilar DA (2008) Acoustic emission and its relationship with friction and wear for sliding contact. Tribol T 51(6):738–747

    Article  CAS  Google Scholar 

  • Bergman F, Eriksson M, Jacobson S (1999) Influence of disc topography on generation of brake squeal. Wear 225:621–628

    Article  Google Scholar 

  • Blau PJ (2001) The significance and use of the friction coefficient. Tribol Int 34(9):585–591

    Article  Google Scholar 

  • Blau PJ (2009) Embedding wear models into friction models. Tribol Lett 34(1):75–79

    Article  CAS  Google Scholar 

  • Boness RJ, McBride SL (1991) Adhesive and abrasive wear studies using acoustic emission techniques. Wear 149(1–2):41–53

    Article  CAS  Google Scholar 

  • Boness RJ, McBride SL, Sobczyk M (1990) Wear studies using acoustic emission techniques. Tribol Int 23(5):291–295

    Article  Google Scholar 

  • Bowden FP, Tabor D, Palmer F (1951) The friction and lubrication of solids. Am J Phys 19(7):428–429

    Article  Google Scholar 

  • Briscoe BJ, Tabor D (1972) Friction and adhesion. Surface forces in friction and adhesion. Faraday Spec Discuss Chem Soc 2: 7–17

    Google Scholar 

  • Canudas de Wit C, Olsson H, Astrom KJ, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Autom Control 40(3):419–425

    Google Scholar 

  • Chen GX, Zhou ZR, Kapsa P, Vincent L (2002) Effect of surface topography on formation of squeal under reciprocating sliding. Wear 253(3–4):411–423

    CAS  Google Scholar 

  • da Silva CRÁ, Jr PG Jr (2008) Uncertainty analysis on the wear coefficient of Archard model. Tribol Int 41(6):473–481

    Google Scholar 

  • Dahl PR (1968) A solid friction model. In: Technical Report TOR-0158(3107-18), El Segundo, USA

    Google Scholar 

  • Dang VH, Perret-Liaudet J, Scheibert J, Bot AL (2013) Direct numerical simulation of the dynamics of sliding rough surfaces. Comput Mech 52(5):1169–1183

    Article  Google Scholar 

  • Dankowicz H (1999) On the modeling of dynamic friction phenomena. ZAMM 79(6):399–409

    Article  Google Scholar 

  • de Moerlooze K, Al-Bender F, Van Brussel H (2010) A generalised asperity-based friction model. Tribol Lett 40(1):113–130

    Article  Google Scholar 

  • Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326

    Article  CAS  Google Scholar 

  • Emami A, Khaleghian S, Su C, Taheri S (2017) Physics-Based friction model with potential application in numerical models for tire-road traction. In: Proceedings of the ASME 2017 dynamic systems and control conference. Tysons, USA

    Google Scholar 

  • Eriksson M, Bergman F, Jacobson S (1999) Surface characterization of brake pads after running under silent and squealing conditions. Wear 232(2):163–167

    Article  CAS  Google Scholar 

  • Eriten M, Polycarpou AA, Bergman LA (2012) A physics-based friction model and integration to a simple dynamical system. J Vib Acoust 134(5):051012

    Google Scholar 

  • Ghazaly NM, El-Sharkawy M, Ahmed I (2014) A review of automotive brake squeal mechanisms. J Mech Des Vib 1(1):5–9

    Google Scholar 

  • Gnecco E, Meyer E (2015) Fundamentals of Friction and Wear on the nano-scale. Springer, Berlin (Germany)

    Book  Google Scholar 

  • Greenwood JA, Williamson JB (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295(1442):300–319

    Article  CAS  Google Scholar 

  • Hadfield M, Brebbia CA (2012) Tribology and Design II. WIT Press, Southampton

    Google Scholar 

  • Hassan AKF, Mohammed S (2016) Artificial neural network model for estimation of wear and temperature in pin-disc contact. Univ J Mech Eng 4(2):39–49

    Article  CAS  Google Scholar 

  • Hu B (2017) Friction and wear of automotive and aircraft brakes. In ASM Handbook. Totten G E, Ed. Materials Park: ASM International, pp 969 –983

    Google Scholar 

  • Jacko MG, Tsang PHS, Rhee SK (1984) Automotive friction materials evolution during the past decade. Wear 100(1–3):503–515

    Article  CAS  Google Scholar 

  • Kang J (2011) Theoretical model of ball joint squeak. Sound Vib 330(22):5490–5499

    Article  Google Scholar 

  • Kang J (2015) Friction-induced noise of gear system with lead screw and nut: mode coupling instability. J Sound Vib 356:155–167

    Article  Google Scholar 

  • Kang J, Kim K (2010) Squeak noise in lead screw systems: self-excited vibration of continuous model. J Sound Vib 329(17):3587–3595

    Article  Google Scholar 

  • Karnopp D (1985) Computer simulation of stick–slip friction in mechanical dynamic systems. J Dyn Syst Meas Control 107(1):100–103

    Article  Google Scholar 

  • Kchaou M, Lazim ARM, Bakar ARA, Fajoui J, Elleuch R, Jacquemin F (2016) Effects of steel fibers and surface roughness on squealing behavior of friction materials. Trans Indian Inst Met 69(6):1277–1287

    Article  CAS  Google Scholar 

  • Khan MA, Cooper D, Starr A (2009) BS-ISO helical gear fatigue life estimation and wear quantitative feature analysis. Strain 45(4):358–363

    Article  Google Scholar 

  • Lontin K, Khan M (2021) Interdependence of friction, wear, and noise: a review. Friction 1–27

    Google Scholar 

  • Mate CM (2008) Tribology on the small scale: a bottom-up approach to friction, lubrication and wear. Oxford University Press, Oxford (UK)

    Google Scholar 

  • Meng HC, Ludema KC (1995) Wear models and predictive equations: Their form and content. Wear 181–183:443–457

    Article  Google Scholar 

  • Mukras S, Kim NH, Sawyer WG, Jackson DB, Bergquist LW (2009) Numerical integration schemes and parallel computation for wear prediction using finite element method. Wear 266(7):822–831

    Article  CAS  Google Scholar 

  • Muller VM, Yushchenko VS, Derjaguin BV (1994) On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J Colloid Interface Sci 45(1):91–101

    Article  Google Scholar 

  • Myshkin NK, Kovalev AV (2009) Adhesion and friction of polymers. In Polymer Tribology. Sujeet K Sinha, Ed. London: Imperial College Press, pp 3–37

    Google Scholar 

  • Nam J, Choi H, Kang J (2016) Finite element analysis for friction noise of simplified hip joint and its experimental validation. J Mech Sci Technol 30(8):3453–3460

    Article  Google Scholar 

  • Newcomb TP, Spurr RT (1971) Friction materials for brakes. Tribology 4(2):75–81

    Article  Google Scholar 

  • Öqvist M (2001) Numerical simulations of mild wear using updated geometry with different step size approaches. Wear 249(1–2):6–11

    Article  Google Scholar 

  • Othman MO, Elkholy AH (1990) Surfaces roughness measuring using dry friction noise. Exp Mech 30(3):309–312

    Article  Google Scholar 

  • Othman MO, Elkholy AH, Seireg AA (1990) Experimental investigation of frictional noise and surface-roughness characteristics. Exp Mech 30(4):328–331

    Article  Google Scholar 

  • Park JY, Salmeron M (2014) Fundamental aspects of energy dissipation in friction. Chem Rev 114(1):677–711

    Article  CAS  Google Scholar 

  • Persson BNJ, Sivebaek IM, Samoilov VN, Zhao K, Volokitin AI, Zhang ZY (2008) On the origin of Amonton’s friction law. J Phys Condens Matter 20(39):395006

    Google Scholar 

  • Quinn TFJ (1971) Oxidational wear. Wear 18(5):413–419

    Article  CAS  Google Scholar 

  • Rhee SK (1970) Wear equation for polymers sliding against metal surfaces. Wear 16(6):431–445

    Article  Google Scholar 

  • Rhee SK (1974) Wear mechanisms for asbestos-reinforced automotive friction materials. Wear 29(3):391–393

    Article  Google Scholar 

  • Rusli M, Okuma M (2007) Effect of surface topography on mode-coupling model of dry contact sliding systems. J Sound Vib 308:721–734

    Article  Google Scholar 

  • Savio G, Meneghello R, Concheri G (2009) A surface roughness predictive model in deterministic polishing of ground glass moulds. Int J Mach Tools Manuf 49(1):1–7

    Article  Google Scholar 

  • Shen X, Cao L, Ruyan L (2010) Numerical simulation of sliding wear based on archard model. In 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China, pp 325–329

    Google Scholar 

  • Sinou JJ, Loyer A, Chiello O, Mogenier G, Lorang X, Cocheteux F, Bellaj S (2013) A global strategy based on experiments and simulations for squeal prediction on industrial railway brakes. J Sound Vib 332(20):5068–5085

    Article  Google Scholar 

  • Stoimenov BL, Maruyama S, Adashi K, Kato K (2007) The roughness effect on the frequency of frictional sound. Tribol Int 40(4):659–664

    Article  Google Scholar 

  • Stoimenov BL, Kato K (2003) The relationship between frictional sound and lumps build-up at the contact interface in singlepass dry sliding between Aluminium pin and flat. In Tribology Series. Elsevier, Amsterdampp 159–164

    Google Scholar 

  • Wang XC, Mo JL, Ouyang H, Wang DW, Chen GX, Zhu MH, Zhou ZR (2016) Squeal noise of friction material with groove-textured surface: An experimental and numerical analysis. J Tribol 138(2): 021401

    Google Scholar 

  • Yadav G, Tiwari S, Rajput A, Jatola R, Jain ML (2016) A review: erosion wear models. In International Conference on Emerging Trends in Mechanical Engineering, Bhopal, India, pp 150–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S.K., Kumaraswamidhas, L.A. (2022). The Effect of Friction Induced Noise, Vibration, Wear and Acoustical Behavior on Rough Surface: A Review on Industrial Perspective. In: Kumar, V., Agarwal, A.K., Jena, A., Upadhyay, R.K. (eds) Advances in Engine Tribology. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-8337-4_8

Download citation

Publish with us

Policies and ethics