Skip to main content

Role of Reactive Astrocytes in Alzheimer’s Disease

  • Chapter
  • First Online:
The Biology of Glial Cells: Recent Advances

Abstract

Astrocytes respond to any pathological stimulus to the central nervous system including in Alzheimer’s disease (AD). They undergo dramatic remodeling at the molecular, cellular, and functional levels to constitute a heterogeneous population across disease stages that are collectively termed as reactive astrocytes. “Astrocyte reactivity” or “reactive astrogliosis” encompasses multiple distinct states astrocytes adopt across the disease stages. For several decades this phenomenon has been considered a nonspecific reaction to pathological insults without any disease-inducing mechanisms and with no therapeutic value. Recent studies have contrarily underscored the specific roles of astrocytes in disease pathogenesis. With the advent of single-cell and single-nucleus transcriptomics, numerous disease-modifying functions of reactive astrocytes are revealed. Diverse subtypes of reactive astrocytes are currently the major focus of AD research. Previously astrocytes were thought to contribute towards neuronal degeneration by releasing pro-inflammatory mediators in AD. Present evidences indicate that reactive astrocytes also play a pivotal role in neuroprotection, plausibly at the prodromal AD stages by secreting anti-inflammatory molecules, clearing Aβ and limiting neuroinflammation in the CNS. In this chapter we attempt to review the extensive yet subtle functional diversities in reactive astrocytes in AD with respect to metabolic alterations, neuroinflammation, Aβ production and clearance, tau pathology, synaptic plasticity, neurotransmitter recycling, and their impact on neuronal health. We further highlight their contribution in identifying early-stage AD biomarkers. Thus, reactive astrocytes may represent an attractive therapeutic target in halting AD progression, its prevention, or in cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe K, Misawa M (2003) Amyloid beta protein enhances the clearance of extracellular L-glutamate by cultured rat cortical astrocytes. Neurosci Res 45(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Abeti R, Abramov AY, Duchen MR (2011) Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain 134(Pt 6):1658–1672

    Article  PubMed  Google Scholar 

  • Acosta C, Anderson HD, Anderson CM (2017) Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 95(12):2430–2447

    Article  CAS  PubMed  Google Scholar 

  • Akama KT, Albanese C, Pestell RG, Van Eldik LJ (1998) Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proc Natl Acad Sci U S A 95(10):5795–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcolea D, Carmona-Iragui M, Suarez-Calvet M, Sanchez-Saudinos MB, Sala I, Anton-Aguirre S et al (2014) Relationship between beta-secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer's disease. J Alzheimers Dis 42(1):157–167

    Article  CAS  PubMed  Google Scholar 

  • Alcolea D, Martinez-Lage P, Sanchez-Juan P, Olazaran J, Antunez C, Izagirre A et al (2015) Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology 85(7):626–633

    Article  CAS  PubMed  Google Scholar 

  • Alkam T, Nitta A, Mizoguchi H, Saito K, Seshima M, Itoh A, Yamada K, Nabeshima T (2008) Restraining tumor necrosis factor-alpha by thalidomide prevents the amyloid beta-induced impairment of recognition memory in mice. Behav Brain Res 189(1):100–106

    Article  CAS  PubMed  Google Scholar 

  • Allaman I, Gavillet M, Belanger M, Laroche T, Viertl D, Lashuel HA, Magistretti PJ (2010) Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J Neurosci 30(9):3326–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson CM, Bridges RJ, Chamberlin AR, Shimamoto K, Yasuda-Kamatani Y, Swanson RA (2001) Differing effects of substrate and non-substrate transport inhibitors on glutamate uptake reversal. J Neurochem 79(6):1207–1216

    Article  CAS  PubMed  Google Scholar 

  • Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci Lett 565:23–29

    Article  CAS  PubMed  Google Scholar 

  • Andriezen WL (1893) The neuroglia elements in the human brain. Br Med J 2(1700):227–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonell A, Mansilla A, Rami L, Llado A, Iranzo A, Olives J, Balasa M, Sanchez-Valle R, Molinuevo JL (2014) Cerebrospinal fluid level of YKL-40 protein in preclinical and prodromal Alzheimer's disease. J Alzheimers Dis 42(3):901–908

    Article  CAS  PubMed  Google Scholar 

  • Apelt J, Ach K, Schliebs R (2003) Aging-related down-regulation of neprilysin, a putative beta-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of beta-amyloid plaques. Neurosci Lett 339(3):183–186

    Article  CAS  PubMed  Google Scholar 

  • Arranz AM, De Strooper B (2019) The role of astroglia in Alzheimer's disease: pathophysiology and clinical implications. Lancet Neurol 18(4):406–414

    Article  CAS  PubMed  Google Scholar 

  • Asgari N, Berg CT, Morch MT, Khorooshi R, Owens T (2015) Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier. Ann Clin Transl Neurol 2(8):857–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assefa BT, Gebre AK, Altaye BM (2018) Reactive astrocytes as drug target in Alzheimer's disease. Biomed Res Int 2018:4160247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bales KR, Du Y, Dodel RC, Yan GM, Hamilton-Byrd E, Paul SM (1998) The NF-kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation. Brain Res Mol Brain Res 57(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Bali P, Banik A, Nehru B, Anand A (2019) Neurotrophic factors mediated activation of astrocytes ameliorate memory loss by amyloid clearance after transplantation of lineage negative stem cells. Mol Neurobiol 56(12):8420–8434

    Article  CAS  PubMed  Google Scholar 

  • Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8(9):663–672

    Article  CAS  PubMed  Google Scholar 

  • Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM (2012) Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Abeta uptake and degradation by astrocytes. J Biol Chem 287(17):13959–13971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia F, Wang HY, Ghilardi MF, Gashi E, Quartarone A, Friedman E, Nixon RA (2007) Cortical plasticity in Alzheimer's disease in humans and rodents. Biol Psychiatry 62(12):1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Belanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Benzing WC, Wujek JR, Ward EK, Shaffer D, Ashe KH, Younkin SG, Brunden KR (1999) Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging 20(6):581–589

    Article  CAS  PubMed  Google Scholar 

  • Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nat Neurosci 14(6):750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigl M, Bruckner MK, Arendt T, Bigl V, Eschrich K (1999) Activities of key glycolytic enzymes in the brains of patients with Alzheimer's disease. J Neural Transm (Vienna) 106(5–6):499–511

    Article  CAS  Google Scholar 

  • Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B (2000) Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis 7:682–689

    Article  CAS  PubMed  Google Scholar 

  • Blonz ER (2017) Alzheimer’s disease as the product of a progressive energy deficiency syndrome in the central nervous system: the neuroenergetic hypothesis. J Alzheimers Dis 60(4):1223–1229

    Article  PubMed  PubMed Central  Google Scholar 

  • Brawek B, Chesters R, Klement D, Muller J, Lerdkrai C, Hermes M, Garaschuk O (2018) A bell-shaped dependence between amyloidosis and GABA accumulation in astrocytes in a mouse model of Alzheimer's disease. Neurobiol Aging 61:187–197

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Wan CQ, Liu Z (2017) Astrocyte and Alzheimer’s disease. J Neurol 264(10):2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Carbone I, Lazzarotto T, Ianni M, Porcellini E, Forti P, Masliah E, Gabrielli L, Licastro F (2014) Herpes virus in Alzheimer’s disease: relation to progression of the disease. Neurobiol Aging 35(1):122–129

    Article  PubMed  Google Scholar 

  • Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER (2019) Astrocyte biomarkers in Alzheimer’s disease. Trends Mol Med 25(2):77–95

    Article  CAS  PubMed  Google Scholar 

  • Carter SF, Scholl M, Almkvist O, Wall A, Engler H, Langstrom B, Nordberg A (2012) Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Ceyzeriat K, Ben Haim L, Denizot A, Pommier D, Matos M, Guillemaud O et al (2018) Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease. Acta Neuropathol Commun 6(1):104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B et al (2015) IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85(3):519–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty A, de Wit NM, van der Flier WM, de Vries HE (2017) The blood brain barrier in Alzheimer’s disease. Vascul Pharmacol 89:12–18

    Article  CAS  PubMed  Google Scholar 

  • Chaves ML, Camozzato AL, Ferreira ED, Piazenski I, Kochhann R, Dall'Igna O, Mazzini GS, Souza DO, Portela LV (2010) Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflammation 7:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng L, Yin WJ, Zhang JF, Qi JS (2009) Amyloid beta-protein fragments 25-35 and 31-35 potentiate long-term depression in hippocampal CA1 region of rats in vivo. Synapse 63(3):206–214

    Article  CAS  PubMed  Google Scholar 

  • Chou RC, Kane M, Ghimire S, Gautam S, Gui J (2016) Treatment for rheumatoid arthritis and risk of Alzheimer's disease: a nested case-control analysis. CNS Drugs 30(11):1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun H, Lee CJ (2018) Reactive astrocytes in Alzheimer's disease: a double-edged sword. Neurosci Res 126:44–52

    Article  CAS  PubMed  Google Scholar 

  • Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, Lee SC (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35(3):306–328

    Article  CAS  PubMed  Google Scholar 

  • Cotto B, Natarajaseenivasan K, Langford D (2019) Astrocyte activation and altered metabolism in normal aging, age-related CNS diseases, and HAND. J Neurovirol 25(5):722–733

    Article  PubMed  PubMed Central  Google Scholar 

  • Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ et al (2010) YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 68(10):903–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossin KL, Tai MH, Krushel LA, Mauro VP, Edelman GM (1997) Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proc Natl Acad Sci U S A 94(6):2687–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Li Z, Noori A, Hyman BT, Serrano-Pozo A (2020) Meta-analysis of mouse transcriptomic studies supports a context-dependent astrocyte reaction in acute CNS injury versus neurodegeneration. J Neuroinflammation 17(1):227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong D, Jansen R, Hoefnagels W, Jellesma-Eggenkamp M, Verbeek M, Borm G, Kremer B (2008) No effect of one-year treatment with indomethacin on Alzheimer's disease progression: a randomized controlled trial. PLoS One 3(1):e1475

    Article  PubMed  PubMed Central  Google Scholar 

  • De Santi S, de Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A et al (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 22(4):529–539

    Article  PubMed  Google Scholar 

  • De Strooper B, Karran E (2016) The cellular phase of Alzheimer's disease. Cell 164(4):603–615

    Article  PubMed  CAS  Google Scholar 

  • de Vivo L, Melone M, Rothstein JD, Conti F (2010) GLT-1 promoter activity in astrocytes and neurons of mouse hippocampus and somatic sensory cortex. Front Neuroanat 3:31

    PubMed  PubMed Central  Google Scholar 

  • Decourt B, Lahiri DK, Sabbagh MN (2017) Targeting tumor necrosis factor alpha for Alzheimer's disease. Curr Alzheimer Res 14(4):412–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-Garcia JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33(4):550–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid T, Behar K, Dhaher R, Bumanglag AV, Lee TS (2012) Roles of glutamine synthetase inhibition in epilepsy. Neurochem Res 37(11):2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekert JO, Gould RL, Reynolds G, Howard RJ (2018) TNF alpha inhibitors in Alzheimer's disease: a systematic review. Int J Geriatr Psychiatry 33(5):688–694

    Article  PubMed  Google Scholar 

  • Escartin C, Galea E, Lakatos A, O'Callaghan JP, Petzold GC, Serrano-Pozo A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24(3):312–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escartin C, Guillemaud O, Carrillo-de Sauvage MA (2019) Questions and (some) answers on reactive astrocytes. Glia 67(12):2221–2247

    Article  PubMed  Google Scholar 

  • Escartin C, Pierre K, Colin A, Brouillet E, Delzescaux T, Guillermier M et al (2007) Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults. J Neurosci 27(27):7094–7104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakhoury M (2018) Microglia and astrocytes in Alzheimer's disease: implications for therapy. Curr Neuropharmacol 16(5):508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I (2015) Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci 16(11):25959–25981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Tome P, Brera B, Arevalo MA, de Ceballos ML (2004) Beta-amyloid25-35 inhibits glutamate uptake in cultured neurons and astrocytes: modulation of uptake as a survival mechanism. Neurobiol Dis 15(3):580–589

    Article  CAS  PubMed  Google Scholar 

  • Forster S, Grimmer T, Miederer I, Henriksen G, Yousefi BH, Graner P et al (2012) Regional expansion of hypometabolism in Alzheimer’s disease follows amyloid deposition with temporal delay. Biol Psychiatry 71(9):792–797

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Wang GJ, Logan J, Xie S, Volkow ND, MacGregor RR et al (1995) Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med 36(7):1255–1262

    CAS  PubMed  Google Scholar 

  • Frost GR, Li YM (2017) The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol 7:12

    Article  CAS  Google Scholar 

  • Fu W, Shi D, Westaway D, Jhamandas JH (2015) Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. J Biol Chem 290(20):12504–12513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funato H, Yoshimura M, Yamazaki T, Saido TC, Ito Y, Yokofujita J, Okeda R, Ihara Y (1998) Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain. Am J Pathol 152(4):983–992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, Van Eldik LJ, Norris CM (2012) Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci 32(46):16129–16140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Esparcia P, Diaz-Lucena D, Ainciburu M, Torrejon-Escribano B, Carmona M, Llorens F, Ferrer I (2018) Glutamate transporter GLT1 expression in Alzheimer disease and dementia with Lewy bodies. Front Aging Neurosci 10:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garwood CJ, Cooper JD, Hanger DP, Noble W (2010) Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry 1:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W (2011) Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis 2:e167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garwood CJ, Ratcliffe LE, Simpson JE, Heath PR, Ince PG, Wharton SB (2017) Review: astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. Neuropathol Appl Neurobiol 43(4):281–298

    Article  CAS  PubMed  Google Scholar 

  • Gasparini L, Ongini E, Wenk G (2004) Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease: old and new mechanisms of action. J Neurochem 91(3):521–536

    Article  CAS  PubMed  Google Scholar 

  • Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99

    Article  CAS  PubMed  Google Scholar 

  • Gibson EM, Nagaraja S, Ocampo A, Tam LT, Wood LS, Pallegar PN et al (2019) Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 176:e13

    Article  CAS  Google Scholar 

  • Gomez-Arboledas A, Davila JC, Sanchez-Mejias E, Navarro V, Nunez-Diaz C, Sanchez-Varo R et al (2018) Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease. Glia 66(3):637–653

    Article  PubMed  Google Scholar 

  • Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2006) Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation. J Alzheimers Dis 9(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes RE, Nava-Mesa MO, Vargas-Sanchez K, Ariza-Salamanca D, Mora-Munoz L (2017) Involvement of astrocytes in Alzheimer’s disease from a Neuroinflammatory and oxidative stress perspective. Front Mol Neurosci 10:427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grolla AA, Fakhfouri G, Balzaretti G, Marcello E, Gardoni F, Canonico PL, DiLuca M, Genazzani AA, Lim D (2013a) Abeta leads to ca(2)(+) signaling alterations and transcriptional changes in glial cells. Neurobiol Aging 34(2):511–522

    Article  CAS  PubMed  Google Scholar 

  • Grolla AA, Sim JA, Lim D, Rodriguez JJ, Genazzani AA, Verkhratsky A (2013b) Amyloid-beta and Alzheimer's disease type pathology differentially affects the calcium signalling toolkit in astrocytes from different brain regions. Cell Death Dis 4:e623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubman A, Chew G, Ouyang JF, Sun G, Choo XY, McLean C et al (2019) A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation. Nat Neurosci 22(12):2087–2097

    Article  CAS  PubMed  Google Scholar 

  • Guillot-Sestier MV, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K, Town T (2015) Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85(3):534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N et al (2015) Neuroinflammatory TNFalpha impairs memory via astrocyte signaling. Cell 163(7):1730–1741

    Article  CAS  PubMed  Google Scholar 

  • Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R et al (2020) Disease-associated astrocytes in Alzheimer's disease and aging. Nat Neurosci 23(6):701–706

    Article  CAS  PubMed  Google Scholar 

  • Harkany T, Abraham I, Timmerman W, Laskay G, Toth B, Sasvari M et al (2000) Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci 12(8):2735–2745

    Article  CAS  PubMed  Google Scholar 

  • Harris JL, Choi IY, Brooks WM (2015) Probing astrocyte metabolism in vivo: proton magnetic resonance spectroscopy in the injured and aging brain. Front Aging Neurosci 7:202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartlage-Rubsamen M, Zeitschel U, Apelt J, Gartner U, Franke H, Stahl T et al (2003) Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent. Glia 41(2):169–179

    Article  PubMed  Google Scholar 

  • Haughey NJ, Mattson MP (2003) Alzheimer's amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. Neuromolecular Med 3(3):173–180

    Article  PubMed  Google Scholar 

  • Hefendehl JK, LeDue J, Ko RW, Mahler J, Murphy TH, MacVicar BA (2016) Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Abeta plaques by iGluSnFR two-photon imaging. Nat Commun 7:13441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al (2015) Neuroinflammation in Alzheimer's disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A et al (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C et al (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 128(Pt 6):1442–1453

    Article  PubMed  Google Scholar 

  • Hong P, Jiang M, Li H (2014) Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 62(12):2044–2060

    Article  PubMed  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Tong H, Lei M, Zhou M, Guo W, Li G et al (2018) Astrocytic glutamatergic transporters are involved in Abeta-induced synaptic dysfunction. Brain Res 1678:129–137

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Xing W, Ryskamp DA, Punzo C, Krizaj D (2011) Localization and phenotype-specific expression of ryanodine calcium release channels in C57BL6 and DBA/2J mouse strains. Exp Eye Res 93(5):700–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husemann J, Silverstein SC (2001) Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer's disease brain. Am J Pathol 158(3):825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y et al (2013) Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 61(7):1018–1028

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikegaya Y, Matsuura S, Ueno S, Baba A, Yamada MK, Nishiyama N, Matsuki N (2002) Beta-amyloid enhances glial glutamate uptake activity and attenuates synaptic efficacy. J Biol Chem 277(35):32180–32186

    Article  CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147

    Article  CAS  Google Scholar 

  • Iram T, Trudler D, Kain D, Kanner S, Galron R, Vassar R et al (2016) Astrocytes from old Alzheimer's disease mice are impaired in Abeta uptake and in neuroprotection. Neurobiol Dis 96:84–94

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T et al (2019) Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565(7738):246–250

    Article  CAS  PubMed  Google Scholar 

  • Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N et al (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer's disease. J Alzheimers Dis 11(1):97–116

    Article  CAS  PubMed  Google Scholar 

  • Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA et al (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Ji HF, Shen L, Zhang HY (2005) Beta-lactam antibiotics are multipotent agents to combat neurological diseases. Biochem Biophys Res Commun 333(3):661–663

    Article  CAS  PubMed  Google Scholar 

  • Jin SM, Cho HJ, Kim YW, Hwang JY, Mook-Jung I (2012) Abeta-induced ca(2+) influx regulates astrocytic BACE1 expression via calcineurin/NFAT4 signals. Biochem Biophys Res Commun 425(3):649–655

    Article  CAS  PubMed  Google Scholar 

  • Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH et al (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat Med 20(8):886–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone M, Gearing AJ, Miller KM (1999) A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol 93:182–193

    Article  CAS  PubMed  Google Scholar 

  • Jones RS, Minogue AM, Connor TJ, Lynch MA (2013) Amyloid-beta-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J Neuroimmune Pharmacol 8(1):301–311

    Article  PubMed  Google Scholar 

  • Jung ES, An K, Hong HS, Kim JH, Mook-Jung I (2012) Astrocyte-originated ATP protects Abeta(1-42)-induced impairment of synaptic plasticity. J Neurosci 32(9):3081–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlson MA, Colodner KJ (2015) Glial tau pathology in Tauopathies: functional consequences. J Exp Neurosci 9(Suppl 2):43–50

    CAS  PubMed  Google Scholar 

  • Katsouri L, Georgopoulos S (2011) Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer's disease mouse model. PLoS One 6(7):e21880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian JG, Hsu HW, Mata K, Wolf FW, Kitazawa M (2017) Astrocyte transport of glutamate and neuronal activity reciprocally modulate tau pathology in drosophila. Neuroscience 348:191–200

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V, Mason SM, Paul SM, Holtzman DM (2009) Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular a beta clearance. Neuron 64(5):632–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Jung HM, Yoon BE (2018) Exploring glia to better understand Alzheimer's disease. Anim Cells Syst 22(4):213–218

    Article  CAS  Google Scholar 

  • Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer's disease model. J Immunol 187(12):6539–6549

    Article  CAS  PubMed  Google Scholar 

  • Knobloch M, Konietzko U, Krebs DC, Nitsch RM (2007) Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice. Neurobiol Aging 28(9):1297–1306

    Article  CAS  PubMed  Google Scholar 

  • Koenigsknecht-Talboo J, Landreth GE (2005) Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 25(36):8240–8249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10(7):719–726

    Article  CAS  PubMed  Google Scholar 

  • Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y et al (2013) Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J 27(1):187–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurt MA, Davies DC, Kidd M (1999) Beta-amyloid immunoreactivity in astrocytes in Alzheimer's disease brain biopsies: an electron microscope study. Exp Neurol 158(1):221–228

    Article  CAS  PubMed  Google Scholar 

  • Lam AG, Koppal T, Akama KT, Guo L, Craft JM, Samy B, Schavocky JP, Watterson DM, Van Eldik LJ (2001) Mechanism of glial activation by S100B: involvement of the transcription factor NFkappaB. Neurobiol Aging 22(5):765–772

    Article  CAS  PubMed  Google Scholar 

  • Lam V, Albrecht MA, Takechi R, Giles C, James AP, Foster JK, Mamo JC (2013) The serum concentration of the calcium binding protein S100B is positively associated with cognitive performance in older adults. Front Aging Neurosci 5:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan YL, Zhao J, Ma T, Li S (2016) The potential roles of aquaporin 4 in Alzheimer’s disease. Mol Neurobiol 53(8):5300–5309

    Article  CAS  PubMed  Google Scholar 

  • Lansita JA, Mease KM, Qiu H, Yednock T, Sankaranarayanan S, Kramer S (2017) Nonclinical development of ANX005: a humanized anti-C1q antibody for treatment of autoimmune and neurodegenerative diseases. Int J Toxicol 36(6):449–462

    Article  CAS  PubMed  Google Scholar 

  • Lavisse S, Guillermier M, Herard AS, Petit F, Delahaye M, Van Camp N et al (2012) Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci 32(32):10809–10818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal MC, Dorfman VB, Gamba AF, Frangione B, Wisniewski T, Castano EM, Sigurdsson EM, Morelli L (2006) Plaque-associated overexpression of insulin-degrading enzyme in the cerebral cortex of aged transgenic tg2576 mice with Alzheimer pathology. J Neuropathol Exp Neurol 65(10):976–987

    Article  CAS  PubMed  Google Scholar 

  • Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J et al (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A 114(43):11524–11529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Yu AC (2011a) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8(1):67–80

    Article  PubMed  Google Scholar 

  • Li L, Zhang H, Varrin-Doyer M, Zamvil SS, Verkman AS (2011b) Proinflammatory role of aquaporin-4 in autoimmune neuroinflammation. FASEB J 25(5):1556–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ (2011c) Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 31(18):6627–6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56(8):901–911

    Article  CAS  PubMed  Google Scholar 

  • Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H (2016) Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer's disease. J Neurosci 36(2):577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian H, Zheng H (2016) Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer's disease. J Neurochem 136(3):475–491

    Article  CAS  PubMed  Google Scholar 

  • Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A et al (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 105(11):4441–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967

    Article  CAS  PubMed  Google Scholar 

  • Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton SA (2004) Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx 1(1):101–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Long JM, Holtzman DM (2019) Alzheimer disease: An update on pathobiology and treatment strategies. Cell 179(2):312–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord A, Kalimo H, Eckman C, Zhang XQ, Lannfelt L, Nilsson LN (2006) The Arctic Alzheimer mutation facilitates early intraneuronal Abeta aggregation and senile plaque formation in transgenic mice. Neurobiol Aging 27(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • Madeira C, Lourenco MV, Vargas-Lopes C, Suemoto CK, Brandao CO, Reis T et al (2015) D-serine levels in Alzheimer's disease: implications for novel biomarker development. Transl Psychiatry 5:e561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manev H, Favaron M, Guidotti A, Costa E (1989) Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36(1):106–112

    CAS  PubMed  Google Scholar 

  • Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer's disease. Ann Neurol 40(5):759–766

    Article  CAS  PubMed  Google Scholar 

  • Matias I, Morgado J, Gomes FCA (2019) Astrocyte heterogeneity: impact to brain aging and disease. Front Aging Neurosci 11:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matos M, Augusto E, Machado NJ, dos Santos-Rodrigues A, Cunha RA, Agostinho P (2012) Astrocytic adenosine A2A receptors control the amyloid-beta peptide-induced decrease of glutamate uptake. J Alzheimers Dis 31(3):555–567

    Article  CAS  PubMed  Google Scholar 

  • Matos M, Augusto E, Oliveira CR, Agostinho P (2008) Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 156(4):898–910

    Article  CAS  PubMed  Google Scholar 

  • McGeer EG, McGeer PL (2010) Neuroinflammation in Alzheimer's disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 19(1):355–361

    Article  PubMed  CAS  Google Scholar 

  • Mecocci P, Parnetti L, Romano G, Scarelli A, Chionne F, Cecchetti R et al (1995) Serum anti-GFAP and anti-S100 autoantibodies in brain aging, Alzheimer's disease and vascular dementia. J Neuroimmunol 57(1–2):165–170

    Article  CAS  PubMed  Google Scholar 

  • Merlini M, Meyer EP, Ulmann-Schuler A, Nitsch RM (2011) Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol 122(3):293–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizee MR, Nijland PG, van der Pol SM, Drexhage JA, van Het Hof B, Mebius R et al (2014) Astrocyte-derived retinoic acid: a novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathol 128(5):691–703

    Article  CAS  PubMed  Google Scholar 

  • Mohajeri MH, Wollmer MA, Nitsch RM (2002) Abeta 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J Biol Chem 277(38):35460–35465

    Article  CAS  PubMed  Google Scholar 

  • Mookherjee P, Green PS, Watson GS, Marques MA, Tanaka K, Meeker KD et al (2011) GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model. J Alzheimers Dis 26(3):447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosconi L (2013) Glucose metabolism in normal aging and Alzheimer's disease: methodological and physiological considerations for PET studies. Clin Transl Imaging 1:4. https://doi.org/10.1007/s40336-013-0026-y

    Article  Google Scholar 

  • Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y et al (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease. Eur J Nucl Med Mol Imag 36(5):811–822

    Article  CAS  Google Scholar 

  • Mosconi L, Pupi A, De Leon MJ (2008) Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci 1147:180–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder SD, Veerhuis R, Blankenstein MA, Nielsen HM (2012) The effect of amyloid associated proteins on the expression of genes involved in amyloid-beta clearance by adult human astrocytes. Exp Neurol 233(1):373–379

    Article  CAS  PubMed  Google Scholar 

  • Murray ME, Przybelski SA, Lesnick TG, Liesinger AM, Spychalla A, Zhang B et al (2014) Early Alzheimer's disease neuropathology detected by proton MR spectroscopy. J Neurosci 34(49):16247–16255

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiol Aging 25(5):663–674

    Article  CAS  PubMed  Google Scholar 

  • Nielsen HM, Mulder SD, Belien JA, Musters RJ, Eikelenboom P, Veerhuis R (2010) Astrocytic a beta 1-42 uptake is determined by a beta-aggregation state and the presence of amyloid-associated proteins. Glia 58(10):1235–1246

    Article  PubMed  Google Scholar 

  • Nielsen HM, Veerhuis R, Holmqvist B, Janciauskiene S (2009) Binding and uptake of a beta1-42 by primary human astrocytes in vitro. Glia 57(9):978–988

    Article  PubMed  Google Scholar 

  • Norris CM, Kadish I, Blalock EM, Chen KC, Thibault V, Porter NM, Landfield PW, Kraner SD (2005) Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models. J Neurosci 25(18):4649–4658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberheim NA, Tian GF, Han X, Peng W, Takano T, Ransom B, Nedergaard M (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28(13):3264–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421

    Article  CAS  PubMed  Google Scholar 

  • Oh H, Madison C, Baker S, Rabinovici G, Jagust W (2016) Dynamic relationships between age, amyloid-beta deposition, and glucose metabolism link to the regional vulnerability to Alzheimer’s disease. Brain 139(Pt 8):2275–2289

    Article  PubMed  PubMed Central  Google Scholar 

  • Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58(7):831–838

    PubMed  Google Scholar 

  • Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ (2011) Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegen 6:55

    Article  CAS  Google Scholar 

  • Olsen M, Aguilar X, Sehlin D, Fang XT, Antoni G, Erlandsson A, Syvanen S (2018) Astroglial responses to amyloid-Beta progression in a mouse model of Alzheimer's disease. Mol Imaging Biol 20(4):605–614

    Article  CAS  PubMed  Google Scholar 

  • Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ, Jiang JX, Naus CC, Saez JC, Giaume C (2011) Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31(13):4962–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orre M, Kamphuis W, Osborn LM, Jansen AHP, Kooijman L, Bossers K, Hol EM (2014a) Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol Aging 35(12):2746–2760

    Article  CAS  PubMed  Google Scholar 

  • Orre M, Kamphuis W, Osborn LM, Melief J, Kooijman L, Huitinga I, Klooster J, Bossers K, Hol EM (2014b) Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol Aging 35(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Osborn LM, Kamphuis W, Wadman WJ, Hol EM (2016) Astrogliosis: an integral player in the pathogenesis of Alzheimer’s disease. Prog Neurobiol 144:121–141

    Article  CAS  PubMed  Google Scholar 

  • Palmer JC, Baig S, Kehoe PG, Love S (2009) Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Abeta. Am J Pathol 175(1):262–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14(4):265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker CA, Nabulsi N, Holden D, Lin SF, Cass T, Labaree D et al (2014) Evaluation of 11C-BU99008, a PET ligand for the imidazoline2 binding sites in rhesus brain. J Nucl Med 55(5):838–844

    Article  CAS  PubMed  Google Scholar 

  • Parpura-Gill A, Beitz D, Uemura E (1997) The inhibitory effects of beta-amyloid on glutamate and glucose uptakes by cultured astrocytes. Brain Res 754(1–2):65–71

    Article  CAS  PubMed  Google Scholar 

  • Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer's disease. J Neuroinflammation 2(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131(3):323–345

    Article  CAS  PubMed  Google Scholar 

  • Perez-Nievas BG, Serrano-Pozo A (2018) Deciphering the astrocyte reaction in Alzheimer’s disease. Front Aging Neurosci 10:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters O, Schipke CG, Philipps A, Haas B, Pannasch U, Wang LP, Benedetti B, Kingston AE, Kettenmann H (2009) Astrocyte function is modified by Alzheimer's disease-like pathology in aged mice. J Alzheimers Dis 18(1):177–189

    Article  CAS  PubMed  Google Scholar 

  • Pihlaja R, Koistinaho J, Malm T, Sikkila H, Vainio S, Koistinaho M (2008) Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 56(2):154–163

    Article  PubMed  Google Scholar 

  • Pitt J, Wilcox KC, Tortelli V, Diniz LP, Oliveira MS, Dobbins C et al (2017) Neuroprotective astrocyte-derived insulin/insulin-like growth factor 1 stimulates endocytic processing and extracellular release of neuron-bound Abeta oligomers. Mol Biol Cell 28(20):2623–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16(16):5073–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pow DV, Cook DG (2009) Neuronal expression of splice variants of “glial” glutamate transporters in brains afflicted by Alzheimer's disease: unmasking an intrinsic neuronal property. Neurochem Res 34(10):1748–1757

    Article  CAS  PubMed  Google Scholar 

  • Pow DV, Crook DK (1996) Direct immunocytochemical evidence for the transfer of glutamine from glial cells to neurons: use of specific antibodies directed against the d-stereoisomers of glutamate and glutamine. Neuroscience 70(1):295–302

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Sajja RK, Naik P, Cucullo L (2014) Diabetes mellitus and blood-brain barrier dysfunction: an overview. J Pharm 2(2):125

    Google Scholar 

  • Priego N, Zhu L, Monteiro C, Mulders M, Wasilewski D, Bindeman W et al (2018) STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med 24(7):1024–1035

    Article  CAS  PubMed  Google Scholar 

  • Querol-Vilaseca M, Colom-Cadena M, Pegueroles J, San Martin-Paniello C, Clarimon J, Belbin O, Fortea J, Lleo A (2017) YKL-40 (Chitinase 3-like I) is expressed in a subset of astrocytes in Alzheimer’s disease and other tauopathies. J Neuroinflammation 14(1):118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T et al (2018) P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer’s disease model. J Exp Med 215(6):1649–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ries M, Sastre M (2016) Mechanisms of Abeta clearance and degradation by glial cells. Front Aging Neurosci 8:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8(3):247–268

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JJ, Olabarria M, Chvatal A, Verkhratsky A (2009) Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16(3):378–385

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Vieitez E, Ni R, Gulyas B, Toth M, Haggkvist J, Halldin C, Voytenko L, Marutle A, Nordberg A (2015) Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur J Nucl Med Mol Imaging 42(7):1119–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Scholl M et al (2016) Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain 139(Pt 3):922–936

    Article  PubMed  PubMed Central  Google Scholar 

  • Rojas-Gutierrez E, Munoz-Arenas G, Trevino S, Espinosa B, Chavez R, Rojas K, Flores G, Diaz A, Guevara J (2017) Alzheimer’s disease and metabolic syndrome: a link from oxidative stress and inflammation to neurodegeneration. Synapse 71(10):e21990

    Article  PubMed  CAS  Google Scholar 

  • Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR (2005) Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 92(2):226–234

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE et al (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433(7021):73–77

    Article  CAS  PubMed  Google Scholar 

  • Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer’s disease. Front Comput Neurosci 8:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha P, Sarkar S, Paidi RK, Biswas SC (2020) TIMP-1: a key cytokine released from activated astrocytes protects neurons and ameliorates cognitive behaviours in a rodent model of Alzheimer’s disease. Brain Behav Immun 87:804–819

    Article  CAS  PubMed  Google Scholar 

  • Samakashvili S, Ibanez C, Simo C, Gil-Bea FJ, Winblad B, Cedazo-Minguez A, Cifuentes A (2011) Analysis of chiral amino acids in cerebrospinal fluid samples linked to different stages of Alzheimer disease. Electrophoresis 32(19):2757–2764

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Biswas SC (2021) Astrocyte subtype-specific approach to Alzheimer’s disease treatment. Neurochem Int 145:104956

    Article  CAS  PubMed  Google Scholar 

  • Sastre M, Gentleman SM (2010) NSAIDs: how they work and their prospects as therapeutics in Alzheimer’s disease. Front Aging Neurosci 2:20

    PubMed  PubMed Central  Google Scholar 

  • Schallier A, Smolders I, Van Dam D, Loyens E, De Deyn PP, Michotte A, Michotte Y, Massie A (2011) Region- and age-specific changes in glutamate transport in the AbetaPP23 mouse model for Alzheimer’s disease. J Alzheimers Dis 24(2):287–300

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Wellendorph P, Frolund B, Clausen RP, Krogsgaard-Larsen P (2017) Astrocytic GABA transporters: pharmacological properties and targets for antiepileptic drugs. Adv Neurobiol 16:283–296

    Article  PubMed  Google Scholar 

  • Scimemi A, Meabon JS, Woltjer RL, Sullivan JM, Diamond JS, Cook DG (2013) Amyloid-beta1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J Neurosci 33(12):5312–5318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR (2011) Glutamate transporter variants reduce glutamate uptake in Alzheimer's disease. Neurobiol Aging 32:551

    Article  CAS  Google Scholar 

  • Seidel K, Vinet J, Dunnen WF, Brunt ER, Meister M, Boncoraglio A et al (2012) The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol 38(1):39–53

    Article  CAS  PubMed  Google Scholar 

  • Sekar S, McDonald J, Cuyugan L, Aldrich J, Kurdoglu A, Adkins J et al (2015) Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes. Neurobiol Aging 36(2):583–591

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano-Pozo A, Mielke ML, Gomez-Isla T, Betensky RA, Growdon JH, Frosch MP, Hyman BT (2011) Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol 179(3):1373–1384

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51(6–7):333–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE (2003) Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis 14(1):133–145

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W et al (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549(7673):523–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P (1994) Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol 35(5):546–551

    Article  CAS  PubMed  Google Scholar 

  • Simpson JE, Fernando MS, Clark L, Ince PG, Matthews F, Forster G et al (2007) White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol Appl Neurobiol 33(4):410–419

    Article  CAS  PubMed  Google Scholar 

  • Simpson JE, Ince PG, Shaw PJ, Heath PR, Raman R, Garwood CJ et al (2011) Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype. Neurobiol Aging 32(10):1795–1807

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Abraham WC (2017) Astrocytes and synaptic plasticity in health and disease. Exp Brain Res 235(6):1645–1655

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Agrawal A, Singal CMS, Pandey HS, Seth P, Sharma SK (2020) Sinomenine inhibits amyloid beta-induced astrocyte activation and protects neurons against indirect toxicity. Mol Brain 13(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S et al (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. [corrected]. Cell Stem Cell 12(4):426–439

    Article  CAS  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV (2014a) Astrogliosis. Cold Spring Harb Perspect Biol 7(2):a020420

    Article  PubMed  Google Scholar 

  • Sofroniew MV (2014b) Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20(2):160–172

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16(5):249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sollvander S, Nikitidou E, Brolin R, Soderberg L, Sehlin D, Lannfelt L, Erlandsson A (2016) Accumulation of amyloid-beta by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol Neurodegen 11(1):38

    Article  CAS  Google Scholar 

  • Soucek T, Cumming R, Dargusch R, Maher P, Schubert D (2003) The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 39(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9(2):260–267

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Sato N, Morishita R (2014) Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front Aging Neurosci 6:171

    PubMed  PubMed Central  Google Scholar 

  • Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S et al (2013) Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A 110(27):E2518–E2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terai K, Iwai A, Kawabata S, Sasamata M, Miyata K, Yamaguchi T (2001) Apolipoprotein E deposition and astrogliosis are associated with maturation of beta-amyloid plaques in betaAPPswe transgenic mouse: implications for the pathogenesis of Alzheimer's disease. Brain Res 900(1):48–56

    Article  CAS  PubMed  Google Scholar 

  • Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E (2000) Amyloid beta-protein (Abeta)-containing astrocytes are located preferentially near N-terminal-truncated Abeta deposits in the human entorhinal cortex. Acta Neuropathol 100(6):608–617

    Article  CAS  PubMed  Google Scholar 

  • Tomimoto H, Akiguchi I, Suenaga T, Nishimura M, Wakita H, Nakamura S, Kimura J (1996) Alterations of the blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer’s disease patients. Stroke 27(11):2069–2074

    Article  CAS  PubMed  Google Scholar 

  • Tyacke RJ, Fisher A, Robinson ES, Grundt P, Turner EM, Husbands SM, Hudson AL, Parker CA, Nutt DJ (2012) Evaluation and initial in vitro and ex vivo characterization of the potential positron emission tomography ligand, BU99008 (2-(4,5-dihydro-1H-imidazol-2-yl)-1- methyl-1H-indole), for the imidazoline(2) binding site. Synapse 66(6):542–551

    Article  CAS  PubMed  Google Scholar 

  • Tyzack GE, Sitnikov S, Barson D, Adams-Carr KL, Lau NK, Kwok JC et al (2014) Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun 5:4294

    Article  CAS  PubMed  Google Scholar 

  • Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, Bu G, Frieden C, Holtzman DM (2013) ApoE influences amyloid-beta (Abeta) clearance despite minimal apoE/Abeta association in physiological conditions. Proc Natl Acad Sci U S A 110(19):E1807–E1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Parpura V, Rodriguez-Arellano JJ, Zorec R (2019a) Astroglia in Alzheimer’s disease. In: Verkhratsky A, Ho M, Zorec R, Parpura V (eds) Neuroglia in neurodegenerative diseases. Springer, Singapore

    Chapter  Google Scholar 

  • Verkhratsky A, Rodrigues JJ, Pivoriunas A, Zorec R, Semyanov A (2019b) Astroglial atrophy in Alzheimer’s disease. Pflugers Arch 471(10):1247–1261

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Zorec R, Parpura V (2017) Stratification of astrocytes in healthy and diseased brain. Brain Pathol 27(5):629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V (2016) Astroglia dynamics in ageing and Alzheimer’s disease. Curr Opin Pharmacol 26:74–79

    Article  CAS  PubMed  Google Scholar 

  • Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U (2015) The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res 40(2):402–409

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Zhang X, Wang M, Zhou D, Pan H, Shu Q, Sun B (2018) Early activation of astrocytes does not affect amyloid plaque load in an animal model of Alzheimer’s disease. Neurosci Bull 34(6):912–920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Q, Wu J, Rowan MJ, Anwyl R (2005) Beta-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor. Eur J Neurosci 22(11):2827–2832

    Article  PubMed  Google Scholar 

  • Woltjer RL, Duerson K, Fullmer JM, Mookherjee P, Ryan AM, Montine TJ et al (2010) Aberrant detergent-insoluble excitatory amino acid transporter 2 accumulates in Alzheimer disease. J Neuropathol Exp Neurol 69(7):667–676

    Article  CAS  PubMed  Google Scholar 

  • Wu HY, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z et al (2010) Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci 30(7):2636–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Guo Z, Gearing M, Chen G (2014) Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s [corrected] disease model. Nat Commun 5:4159

    Article  CAS  PubMed  Google Scholar 

  • Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9(4):453–457

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A et al (2014) Enhancing astrocytic lysosome biogenesis facilitates Abeta clearance and attenuates amyloid plaque pathogenesis. J Neurosci 34(29):9607–9620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi H, Sugihara S, Ogawa A, Saido TC, Ihara Y (1998) Diffuse plaques associated with astroglial amyloid beta protein, possibly showing a disappearing stage of senile plaques. Acta Neuropathol 95(3):217–222

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Kiyota T, Horiba M, Buescher JL, Walsh SM, Gendelman HE, Ikezu T (2007) Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 170(2):680–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang R, Shi C, Mao C, Yang Z, Suo Z, Torp R, Xu Y (2017) AQP4 association with amyloid deposition and astrocyte pathology in the Tg-ArcSwe mouse model of Alzheimer’s disease. J Alzheimers Dis 57(1):157–169

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Rettberg JR, Klosinski LP, Cadenas E, Brinton RD (2011) Shift in brain metabolism in late onset Alzheimer’s disease: implications for biomarkers and therapeutic interventions. Mol Aspects Med 32(4–6):247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X et al (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26(43):10939–10948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshiike Y, Kimura T, Yamashita S, Furudate H, Mizoroki T, Murayama M, Takashima A (2008) GABA(a) receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS One 3(8):e3029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med 24(7):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, O'Connor T, Vassar R (2011) The contribution of activated astrocytes to Abeta production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation 8:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Song WM, Andhey PS, Swain A, Levy T, Miller KR et al (2020) Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med 26(1):131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim HI et al (2017) [(18)F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci 20(3):393–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulfiqar S, Garg P, Nieweg K (2019) Contribution of astrocytes to metabolic dysfunction in the Alzheimer’s disease brain. Biol Chem 400(9):1113–1127

    Article  CAS  PubMed  Google Scholar 

  • Zumkehr J, Rodriguez-Ortiz CJ, Cheng D, Kieu Z, Wai T, Hawkins C et al (2015) Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer’s disease. Neurobiol Aging 36(7):2260–2271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sammani Sarkar for Artwork. The work was supported by CSIR, Govt. of India, and by the Department of Science and Technology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas C. Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, S., Guha, S., Biswas, S.C. (2022). Role of Reactive Astrocytes in Alzheimer’s Disease. In: Patro, I., Seth, P., Patro, N., Tandon, P.N. (eds) The Biology of Glial Cells: Recent Advances. Springer, Singapore. https://doi.org/10.1007/978-981-16-8313-8_9

Download citation

Publish with us

Policies and ethics