Skip to main content

Efficient Physical Layer Techniques for Healthcare Applications: Co-Operative Network Coding Algorithms and Modified Equalizers

  • Chapter
  • First Online:
Intelligent Healthcare

Abstract

Medical health applications and the relevant techniques become more and more specific and limited in terms of the required system’s parameters. Indeed, movable hospitals and ambulances, for example, are fully equipped with modern communication appliances that are in need of efficient and specific designs, such as wireless video calls, far distance demonization, high-quality image transmissions…etc. Accordingly, the major contribution for this chapter is proposing modern techniques based on improving data exchanging techniques over the Physical Layer (PL) to fulfill practical requirements of medical applications.

This chapter investigates the Network Coding (NC) technique that implemented to save the transmission power, improve the Bit Error Rate (BER) and Packet Error Rate (PER), and reduce the communication traffic. Moreover, the explicit and efficient design of equalizers that can fit the required parameters of the medical applications explored in this chapter. Indeed, applying the Orthogonal Frequency-Division Multiplexing (OFDM) system on the PL becomes such a well-recommended solution for the complexity resulted from the time-invariant multi-path channel effects, which requires sophisticated equalizers. So, this chapter proposes a simplified equalizer to apply over mobile medical systems such as the wireless communication systems implemented in ambulances or transportable hospitals.

Finally, the queuing algorithms for the Multi-Service Streams Network (MSSN) investigated in good detail, and hence the most applicable queuing algorithm for several medical applications was recommended.

The results of the research work show that PL efficient technique deigns significantly participates in improving mobile wireless communication for medical applications, such as in less power consumption, better BER and PER, and less time-invariant multi-path channel effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attar, H. H., Solyman, A. A. A., Alrosan, A., Chinmay, C., & Mohammad, R. K. (2021). Deterministic cooperative hybrid ring-mesh network coding for big data transmission over lossy channels in 5G networks. EURASIP Journal on Wireless Communications and Networking, 2021, 159. https://doi.org/10.1186/s13638-021-02032-z

    Article  Google Scholar 

  2. Attar, H. H., Vukobratovic, D., Stankovic, L., & Stankovic, V. (2011). Performance analysis of node cooperation with network coding in wireless sensor networks. In 2011 4th IFIP International Conference on New Technologies, Mobility and Security, Paris (pp. 1–4). IEEE. https://doi.org/10.1109/NTMS.2011.5721048

    Chapter  Google Scholar 

  3. Attar, H., Stankovic, L., & Stankovic, V. (2012). Cooperative network-coding system for wireless sensor networks. IET Communications, 6(3), 344–352.

    Article  MathSciNet  MATH  Google Scholar 

  4. El-M, M., Attar, H., Solyman, A. A. A., & Stankovic, L. (2016). Network coding cooperation performance analysis in wireless network over a lossy channel, M users and a destination scenario. Communications and Network, 8, 257–280. https://doi.org/10.4236/cn.2016.84023

    Article  Google Scholar 

  5. Nazir, S., Stankovic, V., Attar, H., Stankovic, L., & Cheng, S. (2013). Relay-assisted rateless layered multiple description video delivery. IEEE Journal on Selected Areas in Communications, 31(8), 1629–1637.

    Article  Google Scholar 

  6. Attar, H., Stankovic, L., Alhihi, M., & Ameen, A. (2014). Deterministic network coding over long term evaluation advance communication system. In Proceedings of 4th International Conference on Digital Information and Communication Technology and its Application (DICTAP) (pp. 56–61). IEEE.

    Google Scholar 

  7. Attar, H. H., Solyman, A. A., Khosravi, M. R., Qi, L., Alhihi, M., & Tavallali, P. (2021). Bit and packet error rate evaluations for half-cycle stage cooperation on 6G wireless networks. Physical Communication, 44, 101249. https://doi.org/10.1016/j.phycom.2020.101249

    Article  Google Scholar 

  8. Attar, H., Alhihi, M., Zhao, B., & Stankovic, L. (2018). Network coding hard and soft decision behavior over the physical payer using PUMTC. In 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE), Paris (pp. 471–474). IEEE. https://doi.org/10.1109/ICACCE.2018.8441742

    Chapter  Google Scholar 

  9. Attar, H. (2016). Physical layer deterministic network coding using PUM turbo codes over AWGN channel, N nodes through a base station scenario. Communications and Network, 8, 241–256.

    Article  Google Scholar 

  10. Attar, H. (2016). Peak-to-average power ratio performance analysis for orthogonal chirp division multiplexing multicarrier systems based on discrete fractional cosine transform. International Journal of Communications, Network and System Sciences, 9, 545–562. https://doi.org/10.4236/ijcns.2016.912043

    Article  Google Scholar 

  11. Attar, H., & Solyman, A. (2017). A proposed orthogonal chirp division multiplexing (OCDM) multicarrier transceiver based on the discrete fractional cosine transform. Journal of Computer and Communications, 5, 34–47. https://doi.org/10.4236/jcc.2017.52005

    Article  Google Scholar 

  12. Attar, H. H., Solyman, A. A. A., Mohamed, A. E. F., Khosravi, M. R., Menon, V. G., Bashir, A. K., & Tavallali, P. (2020). Efficient equalisers for OFDM and DFrFT-OCDM multicarrier systems in mobile E-health video broadcasting with machine learning perspectives. Physical Communication, 42, 101173.

    Article  Google Scholar 

  13. Solyman, A. A., Attar, H., Khosravi, M. R., & Koyuncu, B. (2020). MIMO-OFDM/OCDM low-complexity equalization under a doubly dispersive channel in wireless sensor networks. International Journal of Distributed Sensor Networks, 16(6), 1–16. https://doi.org/10.1177/1550147720912950

    Article  Google Scholar 

  14. Solyman, A. A. A., et al. (2020). A low-complexity equalizer for video broadcasting in cyber-physical social systems through handheld mobile devices. IEEE Access, 8, 67591–67602. https://doi.org/10.1109/ACCESS.2020.2982001

    Article  Google Scholar 

  15. Attar, H. (2017). Multipath routing mathematical model to solve the traffic engineering in multi-protocol label switching network. Journal of Computer and Communications, 5, 113–122.

    Article  MathSciNet  Google Scholar 

  16. Attar, H., Alhihi, M., Samour, M., Solyman, A. A. A., Igorovich, S. S., Georgievna, K. N., & Khalil, F. (2018). A mathematical model for managing the distribution of information fows for MPLS-TE networks under critical conditions. Communications and Network, 10, 31–42.

    Article  Google Scholar 

  17. Alhihi, M., Khosravi, M., Attar, H., & Samour, M. (2017). Determining the optimum number of paths for realization of multi-path routing in MPLS-TE networks. Telkomnika, 15(4), 1701–1709. https://doi.org/10.12928/TELKOMNIKA.v15i4.6597

    Article  Google Scholar 

  18. Attar, H., Khosravi, M. R., Igorovich, S. S., Georgievan, K. N., & Alhihi, M. (2020). Review and performance evaluation of FIFO, PQ, CQ, FQ, and WFQ algorithms in multimedia wireless sensor networks. International Journal of Distributed Sensor Networks, 16(6), 155014772091323. https://doi.org/10.1177/1550147720913233

    Article  Google Scholar 

  19. Attar, H., Khosravi, M. R., Igorovich, S. S., Georgievan, K. N., & Alhihi, M. (2021). E-health communication system with multiservice data traffic evaluation based on a G/G/1 analysis method. Current Signal Transduction Therapy, 16(2), e050521179644. https://doi.org/10.2174/1574362415666200224094706

    Article  Google Scholar 

  20. Xiaodong, C., & Giannakis, G. B. (2003). Bounding performance and suppressing intercarrier interference in wireless mobile OFDM. Communications, IEEE Transactions on, 51, 2047–2056.

    Article  Google Scholar 

  21. Tiejun, W., et al. (2006). Performance degradation of OFDM systems due to Doppler spreading. Wireless Communications, IEEE Transactions on, 5, 1422–1432.

    Article  Google Scholar 

  22. Das, S., & Schniter, P. (2007). Max-SINR ISI/ICI-shaping multicarrier communication over the doubly Dispersive Channel. Signal Processing, IEEE Transactions on, 55, 5782–5795.

    Article  MathSciNet  MATH  Google Scholar 

  23. Won Gi, J., et al. (1999). An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels. Communications, IEEE Transactions on, 47, 27–32.

    Article  Google Scholar 

  24. Rugini, L., & Banelli, P. (2007). Performance analysis of banded equalizers for OFDM systems in time-varying channels. In Signal Processing Advances in Wireless Communications, 2007. SPAWC 2007. IEEE 8th Workshop on (pp. 1–5). IEEE.

    Google Scholar 

  25. Solyman, A., & Wise, J. J. S. S. (2011). "Low-complexity LSMR equalisation of FrFT-based multicarrier Systems in Doubly Dispersive Channels," presented at the ISSPIT 2011. Bilbao.

    Google Scholar 

  26. Taubock, G., et al. (2007). LSQR-based ICI equalization for multicarrier communications in strongly dispersive and highly mobile environments. In Signal Processing Advances in Wireless Communications, 2007. SPAWC 2007. IEEE 8th Workshop on (pp. 1–5).

    Google Scholar 

  27. Luca Rugini, P. B., & Leus, G. (2006). Low-complexity banded equalizers for OFDM systems in doppler spread channels. EURASIP Journal on Applied Signal Processing, 2006, 67404. p. 13.

    Article  Google Scholar 

  28. Rugini, L., et al. (2005). Simple equalization of time-varying channels for OFDM. Communications Letters, IEEE, 9, 619–621.

    Article  Google Scholar 

  29. Saxena, R., & Singh, K. (2005). Fractional Fourier transform: A novel tool for signal processing. Journal of Indian Institute of Science, 58, 11–26.

    Google Scholar 

  30. Namias, V. (1980). The fractional order fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics, 25, 241–265.

    Article  MathSciNet  MATH  Google Scholar 

  31. Almeida, L. B. (1994). The fractional Fourier transform and time-frequency representations. Signal Processing, IEEE Transactions on, 42, 3084–3091.

    Article  Google Scholar 

  32. Ozaktas, H. M., & Mendlovic, D. (1993). Fourier transforms of fractional order and their optical interpretation. Optics Communications, 101, 163–169.

    Article  Google Scholar 

  33. Mendlovic, D., & Ozaktas, H. M. (1993). Fractional Fourier transforms and their optical implementation: I. Journal of the Optical Society of America A, 10, 1875–1881.

    Article  Google Scholar 

  34. Mendlovic, D., et al. (1996). Signal spatial-filtering using the localized fractional Fourier transform. Optics Communications, 126, 14–18.

    Article  Google Scholar 

  35. Ozaktas, H. M., et al. (2001). The fractional Fourier transform: With applications in optics and signal processing. John Wiley & Sons Ltd.

    Book  Google Scholar 

  36. Bultheel, A., & Martìnez Sulbaran, H. (2003). A shattered survey of the fractional Fourier transform. http://www.cs.kuleuven.be/_nalag/papers/ade/frft/index.html,

  37. A. Bultheel and H. E. Sulbaran, "Computation of the fractional Fourier transform," Applied and Computational Harmonic Analysis, vol. 16, pp. 182–202, February 2004.

    Google Scholar 

  38. Yeung, D. S., et al. (2004). Complete way to fractionalize Fourier transform. Optics Communications, 230, 55–57.

    Article  Google Scholar 

  39. Leith, E. (1972). Review of ‘Systems and transforms with applications to optics’. Information Theory, IEEE Transactions on, 18, 451–452.

    Article  Google Scholar 

  40. Shankar, S., & Srivastav, N. (2011). Power play: On the notion of fractional quantum Fourier transform. Potentials, IEEE, 30, 29–32.

    Article  Google Scholar 

  41. Santhanam, B., & Hayat, M. (2011). On a pseudo-subspace framework for discrete fractional Fourier transform based chirp parameter estimation. In Digital signal processing workshop and IEEE signal processing education workshop (DSP/SPE) (Vol. 2011, pp. 360–363). IEEE.

    Google Scholar 

  42. Shi, R., et al. A novel SAR signal reconstruction method from non-uniform sampling associated with fractional Fourier transform. In Measuring technology and mechatronics automation (ICMTMA), 2011 Third International Conference on 2011 (pp. 210–213). IEEE.

    Google Scholar 

  43. Jianjun, G., & Fulin, S. (2010). A new cross-range scaling algorithm based on FrFT. In Signal Processing (ICSP), 2010 IEEE 10th International Conference on (pp. 2043–2046). IEEE.

    Google Scholar 

  44. Xiaolong, C., & Jian, G. (2010). A fast FRFT based detection algorithm of multiple moving targets in sea clutter. In Radar Conference, 2010 (pp. 402–406). IEEE.

    Google Scholar 

  45. Schmidt, D. P., & Rutland, C. J. (2000). A new droplet collision algorithm. Journal of Computational Physics, 164(1), 62–80.

    Article  MATH  Google Scholar 

  46. Balogh, T., & Medvecky´ M. (2012). Average bandwidth allocation model of WFQ. Modelling and Simulation in Engineering, 2012, 301012.

    Article  Google Scholar 

  47. RAPPAPORT. (1996). Wireless Communication Systems.

    Google Scholar 

  48. Vourganas, I., Stankovic, V., Stankovic, L., & Michala, A. L. (2020). Evaluation of home-based rehabilitation sensing systems with respect to standardised clinical tests. Sensors, 20, 26. https://doi.org/10.3390/s20010026

    Article  Google Scholar 

  49. Vourganas, I., Stankovic, V., Stankovic, L., & Kerr, A. (2019). Factors that contribute to the use of stroke self-rehabilitation technologies: A review. JMIR Biomedical Engineering, 4, e13732. https://doi.org/10.2196/13732

    Article  Google Scholar 

  50. Vourganas, I., Stankovic, V., & Stankovic, L. (2021). Individualised responsible artificial intelligence for home-based rehabilitation. Sensors, 21, 2. https://doi.org/10.3390/s21010002

    Article  Google Scholar 

  51. Michala, A. L. (2018). An edge processing solution development for vessel condition monitoring. Ph.D., University of Strathclyde.

    Google Scholar 

  52. Michala, A. L., & Vourganas, I. (2017). A smart modular wireless system for condition monitoring data acquisition. In V. Bertram (Ed.), Hamburg, p. 14 p. Research output: Chapter in Book/Report/Conference proceeding › Conference contribution Compit’17 (pp. 212–225). Volker Bertram.

    Google Scholar 

  53. Michala, A. L., Barltrop, N., Amirafshari, P., Lazakis, I., & Theotokatos, G. (2016). An intelligent system for vessels structural reliability evaluation (pp. 171–179). University of Strathclyde, GBR.

    Google Scholar 

  54. Dikis K, Lazakis I, Michala AL, Raptodimos Y, Theotokatos G (2016) Dynamic risk and reliability assessment for ship machinery decision making. In: Walls L, Revie M, Bedford T (eds). CRC/Taylor & Francis Group, GBR, pp. 685–692

    Google Scholar 

  55. Lazakis, I., Dikis, K., & Michala, A. L. (2016). Condition monitoring for enhanced inspection, maintenance and decision making in ship operations. Technical University of Denmark.

    Google Scholar 

  56. Michala, A. L., Lazakis, I., Theotokatos, G., & Varelas, T. (2016). Wireless condition monitoring for ship applications (pp. 59–66). The Royal Institution of Naval Architects.

    Google Scholar 

  57. Michala, A. L., Lazakis, I., & Theotokatos, G. (2015). Predictive maintenance decision support system for enhanced energy efficiency of ship machinery (pp. 195–205). International Conference on Shipping in Changing Climates. GBR.

    Google Scholar 

  58. Katti, S., Maric, I., Katabi, D., Goldsmith, A., & Medard, M. (2007). Joint relaying and network coding in wireless networks. Proceedings in IEEE ISIT.

    Book  Google Scholar 

  59. Prasad, R. (2004). Ofdm for wireless communications systems. Artech House.

    Google Scholar 

  60. Russell, M., & Stuber, G. L. (1995). Interchannel interference analysis of OFDM in a mobile environment. In Vehicular Technology Conference, 1995 IEEE 45th (Vol. 2, pp. 820–824). IEEE.

    Google Scholar 

  61. Negash, B. G., & Nikookar, H. (2000). Wavelet-based multicarrier transmission over multipath wireless channels. Electronics Letters, 36, 1787–1788.

    Article  Google Scholar 

  62. Darlington, S. (1970). On digital single-sideband modulators. Circuit Theory, IEEE Transactions on, 17, 409–414.

    Article  Google Scholar 

  63. Negash, B. G., & Nikookar, H. (2001). Wavelet based OFDM for wireless channels. In Vehicular Technology Conference, 2001. VTC 2001 Spring. IEEE VTS 53rd (Vol. 1, pp. 688–691). IEEE.

    Google Scholar 

  64. Attar, H.. (2011). Cooperative network coding for wireless networks. Ph.D thesis, the University of Strathclyde, UK.

  65. Nelson, C., & Fagoonee, L. (2007). EXIT charts for PUM woven turbo codes. In 2007 Fourth International Symposium on Wireless Communication Systems (pp. 11–15). IEEE. https://doi.org/10.1109/ISWCS.2007.4392292

    Chapter  Google Scholar 

  66. Rugini, L., Banelli, P., & Leus, G. (2005). Simple equalization of time-varying channels for OFDM. IEEE Communications Letters, 9(7), 619–621. https://doi.org/10.1109/LCOMM.2005.1461683

    Article  Google Scholar 

  67. Sujata, D., Chinmay, C., Sourav, K. G., Subhendu, K. P., & Jaroslav, F. (2021). BIFM: Big-data driven intelligent forecasting model for COVID-19 (pp. 1–13). IEEE Access. https://doi.org/10.1109/ACCESS.2021.3094658

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Attar .

Editor information

Editors and Affiliations

Ethics declarations

There is no conflict of interests.

Funding

There is no funding support.

Data Availability

Not applicable.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Attar, H. (2022). Efficient Physical Layer Techniques for Healthcare Applications: Co-Operative Network Coding Algorithms and Modified Equalizers. In: Chakraborty, C., Khosravi, M.R. (eds) Intelligent Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-16-8150-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8150-9_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8149-3

  • Online ISBN: 978-981-16-8150-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics