Skip to main content

Biofilms for Biofuel Production

  • Chapter
  • First Online:
Bio-Clean Energy Technologies Volume 2

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 300 Accesses

Abstract

The syntropic consortium of microorganisms with the self-secreted exopolysaccharide (EPS) layer is usually known as a biofilm. The presence of EPS develops the antibiotic resistivity by inhibiting penetration of the antibiotic through this layer, leading to several negative aspects on the environment as well as the human being. Apart from this negativity, some bacterial biofilm that is found to be beneficial to society can be used in wastewater treatment, in polyethylene degradation, in bioremediation, and also in the food industry. Another positive aspect of biofilm technology is biofuel production which needs to be further explored. The conversion of lignocellulose materials to biofuel through pretreatment, saccharification, and product recovery using current technologies is cost-effective. Biofilm has the potency which can improve the efficiency of the product recovery processes, and also a condensation of hydrolytic enzymes, which are analogous to the cells and present at the biofilm-substrate interface, can increase the reaction rate. Biofilm is a microbial syntropy where multiple species are involved in the conversion of complex substrates and fermentation of both hexose and pentose to hydrolysates which disperse outward. Also, both the bacterial and fungal symbiosis allows simultaneous delignification and saccharification. The intercellular gene and signal exchange between the cells get enhanced due to the microenvironment of the biofilm. The separation of biofuel from its producer gets simpler due to the immobilization property of biofilm, and it assists in the retention of biomass, to continue reaction within the fermenter. Thus, the use of biofilm has the added advantages to biofuel production using solid-state fermentation (SSF). Biofilm technology is capable to spur significant innovations to optimize biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adegboye MF, Lobb B, Babalola OO, Doxey AC, Ma K (2018) Draft genome sequences of two novel cellulolytic streptomyces strains isolated from South African rhizosphere soil. Genome Announc 6(26):e00632–ee1618

    Article  Google Scholar 

  • Al-Shuhoomi A, Al-Bahry S, Al-Wahaibi Y, Joshi SJ (2021) Bioethanol production from biodiesel-derived glycerol: a case study. In: Srivastava M, Srivastava N, Singh R (eds) Bioenergy research: biomass waste to energy. Clean energy production technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-1862-8_9

    Chapter  Google Scholar 

  • Bandyopadhyay A, St€ockel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiologicalH2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:139. https://doi.org/10.1038/ncomms1139

    Article  CAS  PubMed  Google Scholar 

  • Bayer TS, Widmaier DM, Temme K, Ea M, Santi DV, Voigt CA (2009) Synthesis of methyl halides from biomass using engineered microbes. J Am Chem Soc 131:6508–6515. https://doi.org/10.1021/ja809461u

    Article  CAS  PubMed  Google Scholar 

  • Ben-Iwo J, Manovic V, Longhurst P (2016) Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew Sust Energ Rev 63:172–192

    Article  Google Scholar 

  • Cardona CA, Sanchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    Article  CAS  Google Scholar 

  • Cavedon K, Canale-Parole E (1992) Physiological interactions between a mesophilic cellulolytic clostridium and a noncellulolytic bacterium. FEMSMicrobiol Lett 86:237–245

    Article  CAS  Google Scholar 

  • Chaffron S, von Mering C (2007) Termites in the woodwork. Genome Biol 8:229–229. https://doi.org/10.1186/gb-2007-8-11-229

  • Chowdhary P, Raj A (eds) (2020) Contaminants and clean technologies. CRC Press

    Google Scholar 

  • Chowdhary P, Raj A, Bharagava RN (2018) Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental. Chemosphere 194:229–246

    Article  CAS  Google Scholar 

  • Chowdhary P, Raj A, Verma D, Yusuf A, Microorganisms for sustainable environment and health Elsevier 2020

    Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109:1674–1684

    Article  CAS  Google Scholar 

  • Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140

    Article  CAS  Google Scholar 

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  Google Scholar 

  • de Vrije T, Antoine N, Buitelaar RM, Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones EE, Luth P, Oostra J, Ravensberg WJ, Renaud R, Rinzema A, Weber FJ, Whipps JM (2001) The fungal biocontrol agent Coniothyrium minitans: production by solid state fermentation, application and marketing. Appl Microbiol Biotechnol 56:58–68

    Article  Google Scholar 

  • Dutta B, Nag M, Lahiri D, Ray RR (2021) Analysis of biofilm matrix by multiplex fluorescence in situ hybridization (M-FISH) and confocal Laser scanning microscopy (CLSM) during nosocomial infections. In: Nag M, Lahiri D (eds) Analytical methodologies for biofilm research. Springer Protocols Handbooks. Springer, New York. https://doi.org/10.1007/978-1-0716-1378-8_8

    Chapter  Google Scholar 

  • Fan ZL, McBride JE, van Zyl WH, Lynd LR (2005) Theoretical analysis of selection-based strain improvement for microorganisms with growth dependent upon extracytoplasmic enzymes. Biotechnol Bioeng 92:35–44

    Article  CAS  Google Scholar 

  • Feng Y, Yu Y, Wang X, Qu Y, Li D, He W, Kim BH (2011) Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure. Bioresour Technol 102:742–747. https://doi.org/10.1016/j.biortech.2010.08.074

    Article  CAS  PubMed  Google Scholar 

  • Franzén CJ (2003) Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast 20:117–132. https://doi.org/10.1002/yea.956

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    Article  CAS  Google Scholar 

  • Gauss WF, Suzuki S, Takagi M (1976) Manufacture of alcohol from cellulosic materials using plural ferments. US Patent No 3990944

    Google Scholar 

  • Ge Y, Liu J, Tian G (2011) Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresour Technol 102:130–134

    Article  CAS  Google Scholar 

  • Geetha SJ, Al-Bahry S, Al-Wahaibi Y, Joshi SJ (2020) Recent update on biodiesel production using various substrates and practical execution. In: Srivastava N, Srivastava M, Mishra P, Gupta V (eds) Substrate analysis for effective biofuels production. Clean energy production technologies. Springer, Singapore. https://doi.org/10.1007/978-981-32-9607-7_5

    Chapter  Google Scholar 

  • Ghirardi ML, Dubini A, Yu J, Maness P-C (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61

    Article  CAS  Google Scholar 

  • Guevara C, Zambrano MM (2006) Sugarcane cellulose utilization by a defined microbial consortium. FEMSMicrobiol Lett 255:52–58. https://doi.org/10.1111/j.1574-6968.2005.00050.x

    Article  CAS  Google Scholar 

  • Gutierrez-Correa M, Tengerdy RP (1997) Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol Lett 19:665–667

    Article  CAS  Google Scholar 

  • Gutierrez-Correa M, Villena GK (2003) Surface adhesion fermentation: a new fermentation category. Rev Peru Biol 10:113–124

    Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  CAS  Google Scholar 

  • Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y (2002) Construction of a stable microbial community with high cellulose degradation ability. Appl Microbiol Biotechnol 59:529–534. https://doi.org/10.1007/s00253-002-1026-4

    Article  CAS  PubMed  Google Scholar 

  • Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32:172–184

    Article  CAS  Google Scholar 

  • Ingale S, Parnandi VA, Joshi SJ (2019) Bioethanol production using Saccharomyces cerevisiae immobilized in calcium alginate–magnetite beads and application of response surface methodology to optimize bioethanol yield. In: Srivastava N, Srivastava M, Mishra P, Upadhyay S, Ramteke P, Gupta V (eds) Sustainable approaches for biofuels production technologies. Biofuel and biorefinery technologies, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-94797-6_9

    Chapter  Google Scholar 

  • Ishida H, Hata Y, Kawato A, Abe Y, Suginami K, Imayasu S (2000) Identification of functional elements that regulate the glucoamylase encoding gene (glaB) expressed in solid-state culture of aspergillus oryzae. Curr Genet 37:373–379

    Article  CAS  Google Scholar 

  • Jasu A, Lahiri D, Nag M, Ray RR (2021) Biofilm-associated metal bioremediation. In: Joshi SJ, Deshmukh A, Sarma H (eds) Biotechnology for sustainable environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-1955-7_8

    Chapter  Google Scholar 

  • Jayaraman A, HallockPJ CRM, Lee CC, Mansfeld FB, Wood TK (1999) Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl Microbiol Biotechnol 52:267–275

    Article  CAS  Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Soc General Microbiol 152:2529–2536. https://doi.org/10.1099/mic.0.29028-0

    Article  CAS  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2004) Effective cellulose degradation by a mixed-culture system composed of a cellulolytic clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol 51:133–142. https://doi.org/10.1016/j.femsec.2004.07.015

    Article  CAS  PubMed  Google Scholar 

  • Lan EI, Dekishima Y, Chuang DS, Liao JC (2013) Metabolic engineering of 2-pentanone synthesis in Escherichia coli. AICHE J 59(9):3167–3175

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Progr 24:815–820

    CAS  Google Scholar 

  • Li Z, Yuan H, Yang J, Li B (2011) Optimization of the biomass production of oil algae Chlorella minutissimaUTEX2341. Bioresour Technol 102:9128e34

    Google Scholar 

  • Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  Google Scholar 

  • Lu Y, Zhang YP, Lynd LR (2006) Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. PNAS 103:16165–16169

    Article  CAS  Google Scholar 

  • Lv Z, Yang J, Wang E, Yuan H (2008) Characterization of extracellular and substrate-bound cellulases from a mesophilic sugarcane bagasse-degrading microbial community. J Gen Appl Microbiol 43:1467–1472. https://doi.org/10.1016/j.procbio.2008.08.001

    Article  CAS  Google Scholar 

  • Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465. https://doi.org/10.1146/annurev.energy.21.1.403

    Article  Google Scholar 

  • Lynd LR, Weimer PJ, ZylWH V, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Molecul Biol Rev 66:506–739. https://doi.org/10.1128/MMBR.66.3.506

    Article  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  • Nag M, Lahiri D, Ghosh A, Das D, Ray RR (2021) Quorum Sensing. In: Ray RR, Nag M, Lahiri D (eds) Biofilm-mediated diseases: causes and controls. Springer, Singapore. https://doi.org/10.1007/978-981-16-0745-5_2

    Chapter  Google Scholar 

  • Naik SN, GoudVV RPK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev 14:578–597

    Article  CAS  Google Scholar 

  • Nakashimada Y, Srinivasan K, Murakami M, Nishio N (2000) Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens. Biotechnol Lett 22:223–227

    Article  CAS  Google Scholar 

  • Okeke BC, Lu J (2011) Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Appl Biochem Biotechnol 163:869–881. https://doi.org/10.1007/s12010-010-9091-0

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. MicrobEcol 31:225–247

    CAS  Google Scholar 

  • Pandey A, Larroche C, Gnansounou E, Khanal SK, Dussap C-G, Ricke S (2019) Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels

    Google Scholar 

  • Rahardjo YSP, Tramper J, Rinzema A (2006) Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv 24:161–177

    Article  CAS  Google Scholar 

  • Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643. https://doi.org/10.1016/j.tibtech.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bio Energy Res 01:20–43

    Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Molecul Biol Rev 61:262–262

    CAS  Google Scholar 

  • Seibert M (2009) Applied photosynthesis for biofuels production. In: Smith KC, editor. Photobiological Sciences Online. Am Soc Photobiol; Website: http://www.photobiology.info/Seibert.html#TOP

  • Shin H, McClendon S, Vo T, Chen RR (2010) Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl Environ Microbiol 76:8150–8159. https://doi.org/10.1128/AEM.00908-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shou W, Ram S, Vilar JMG (2007) Synthetic cooperation in engineered yeast populations. PNAS 104:1877–1882. https://doi.org/10.1073/pnas.0610575104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    Article  CAS  Google Scholar 

  • Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    Article  CAS  Google Scholar 

  • Vega JL, Clausen EC, Gaddy JL (1988) Biofilm reactors for ethanol production. Enzyme Microb Technol 10:390–402

    Article  CAS  Google Scholar 

  • Wang Z, Chen S (2009) Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 83:1–18. https://doi.org/10.1007/s00253-009-1940-9

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Yan L, Cui Z, Gao Y, Wang Y, Jing R (2011) Characterization of a microbial consortium capable of degrading lignocellulose. Bioresour Technol 102(19):9321–9324. https://doi.org/10.1016/j.biortech.2011.07.065

    Article  CAS  PubMed  Google Scholar 

  • Warikoo V, McInerney MJ, Robinson JA, Suflita JM (1996) Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl Environ Microbiol 62:26–32

    Article  CAS  Google Scholar 

  • Wetzel RG (1991) Extracellular enzymatic interactions: storage, redistribution and interspecific communication. In: Chrorst RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 6–28

    Chapter  Google Scholar 

  • Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T, Eurwilaichitr L, Igarashi Y, Champreda V (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb Technol 47:283–290. https://doi.org/10.1016/j.enzmictec.2010.07.013

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  • Yan J, Op den Camp HJM, Jetten MSM, Hu YY, Haaijer SCM (2010) Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen. Syst Appl Microbiol 33:407–415. https://doi.org/10.1016/j.syapm.2010.08.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, B. et al. (2022). Biofilms for Biofuel Production. In: Chowdhary, P., Pandit, S., Khanna, N. (eds) Bio-Clean Energy Technologies Volume 2. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-8094-6_13

Download citation

Publish with us

Policies and ethics