Skip to main content

Use of Synthetic Ecology Approach in Exploring Plant–Microbial Interactions Under Habitat-Imposed Stresses

  • Chapter
  • First Online:
Plant Stress Mitigators

Abstract

Soil microbes have received an attention due to their possible roles in plant growth promotion, avoidance of biotic and abiotic stress, soil remediation, and reclamation. However, climate change may affect microbial ecology and function, especially in marginal lands; therefore, we need to explore viable options of helping the soil microbes and bioinoculants perform better. In recent times, focus has been shifting toward harnessing groups of microorganisms or constructing consortia of selected microbes due to the possibilities of multiple roles, better adaptation, and ease in association with the hosts when compared with singular strains. Here, we reviewed role of this synthetic ecology approach in ameliorating biotic and abiotic stresses from plants with a focus on marginal lands, which are on the rise in scenarios of changing climate. In addition, possible mechanisms behind may include efficient and cooperative metabolism, closer interaction among microbes, and with the hosts, division of labor, and resilience in plant phenotype. Although further investigation in application strategies after successfully building the consortia would be required, utilization of well-matched consortia may help crop production particularly under changing climate scenarios, which have or may lead to adverse effect of functionality of applied single strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrol IP, Yadav JSP, Massoud FI (1988) Salt affected soils and their management. Food and Agriculture Organization of the United Nations, Soils Bull, vol 39. FAO, Rome, Italy

    Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2009) Potato responds to salt stress by increased activity of antioxidant enzymes. J Integr Plant Biol 51:10951103

    Article  CAS  Google Scholar 

  • Ahemad M (2019) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem 12(7):13651377

    Article  CAS  Google Scholar 

  • Ahkami AH, Allen White R, Handakumbura PP, Jansson C (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233243

    Article  Google Scholar 

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Routledge, New York

    Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson K, Bows A (2011) Beyond ‘dangerous’ climate change: emission scenarios for a new world. Philos Trans R Soc A Math Phys Eng Sci 369(1934):20–44

    Article  CAS  Google Scholar 

  • Andrades-Moreno L, del Castillo I, Parra R, Doukkali B, Redondo-Gómez S, Pérez-Palacios P, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2014) Prospecting metal-resistant plant-growth promoting rhizobacteria for rhizoremediation of metal contaminated estuaries using Spartina densiflora. Environ Sci Pollut Res 21(5):3713–3721

    Article  CAS  Google Scholar 

  • Angelim AL, Costa SP, Farias BCS, Aquino LF, Melo VMM (2013) An innovative bioremediation strategy using a bacterial consortium entrapped in chitosan beads. J Environ Manag 127:1017

    Article  CAS  Google Scholar 

  • Arif I, Batool M, Schenk PM (2020) Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol 38(12):1385–1396

    Article  CAS  PubMed  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth promoting Rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture [Review]. Front Plant Sci 9:1473. English

    Article  PubMed  PubMed Central  Google Scholar 

  • Baha N, Bekki A (2015) An approach of improving plant salt tolerance of lucerne (Medicago sativa) grown under salt stress: use of bioinoculants. J Plant Growth Regul 34:169–182

    Article  CAS  Google Scholar 

  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H et al (2018) Structure and function of the global topsoil microbiome. Nature 560(7717):233–237

    Article  CAS  PubMed  Google Scholar 

  • Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1988) Migration, colonization and adsorption of Azospirillum brasiliense to wheat roots. Lectins-Bio Biochem Clinical Biochem 6:69–83

    Google Scholar 

  • Belcher RW, Kim HS, Buege B, Jarand ML, Cheiky MC, Sills RA (2019) Biochar as a microbial carrier. Google Patents

    Google Scholar 

  • Berg G, Mahnert A, MoisslEichinger C (2014) Beneficial effects of plant associated microbes on indoor microbiomes and human health? Front Microbiol 5:1515

    Google Scholar 

  • Berg S, Dennis PG, PaungfooLonhienne C, Anderson J, Robinson N, Brackin R, Royle A, DiBella L, Schmidt S (2020) Effects of commercial microbial biostimulants on soil and root microbial communities and sugarcane yield. Biol Fertil Soils 56(4):565580

    Article  CAS  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Bintanja R (2018) The impact of Arctic warming on increased rainfall. Sci Rep. https://doi.org/10.1038/s41598-018-34450-3

  • Blagodatskaya E, Blagodatsky S, Dorodnikov M, Kuzyakov Y (2010) Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments. Glob Chang Biol 16(2):836–848

    Article  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76(4):999–1007

    Article  CAS  PubMed  Google Scholar 

  • Cetin SC, Karaca A, Kizilkaya R, Turgay OC (2011) Role of plant growth promoting bacteria and fungi in heavy metal detoxification. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Springer, Berlin, pp 369–388

    Chapter  Google Scholar 

  • Chaudhary T, Shukla P (2019) Bioinoculants for bioremediation applications and disease resistance: innovative perspectives. Indian J Microbiol 59(2):129–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiu HC, Levy R, Borenstein E (2014) Emergent biosynthetic capacity in simplemicrobial communities. PLoS Comput Biol 10:e1003695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6(8):art130

    Article  Google Scholar 

  • Compant S, Van Der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73(2):197–214

    CAS  PubMed  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769

    CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1):323–330

    Article  CAS  PubMed  Google Scholar 

  • Das S, Ho A, Kim PJ (2019) Editorial: Role of microbes in climate smart agriculture [Editorial]. Front Microbiol 10:2756. English

    Article  PubMed  PubMed Central  Google Scholar 

  • De Angelis KM, Grace P, Topçuoğlu BD, van Diepen Linda TA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104

    Google Scholar 

  • De Roy K, Marzorati M, Pieter VDA, Tom VDW, Boon N (2014) Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ Microbiol 16:1472–1481

    Article  PubMed  Google Scholar 

  • De Vos WM (2013) Fame and future of faecal transplantations–developing next generation therapies with synthetic microbiomes. Microb Biotechnol 6:316–325

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vries FT, Griffiths RI (2018) Chapter 5—Impacts of climate change on soil microbial communities and their functioning. In: Horwath WR, Kuzyakov Y (eds) Developments in soil science. Elsevier, Amsterdam, pp 111–129

    Google Scholar 

  • De Vries FT, Liiri ME, Bjørnlund L et al (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Chang 2:276–280. https://doi.org/10.1038/nclimate1368

    Article  Google Scholar 

  • Deepti B, Nidhi B, Deepamala M, Chandan SC, Alok K (2014) ACC deaminase containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171:884–894

    Article  CAS  Google Scholar 

  • Dopheide A, Lear G, He Z, Zhou J, Lewis GD (2015) Functional gene composition, diversity and redundancy in microbial stream biofilm communities. PLoS One 10:e0123179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drozdowicz A, Ferreira Santos GM (1987) Nitrogenase activity in mixed cultures of Azospirillum with other bacteria. Z Mikrobiol 142:487493

    Google Scholar 

  • Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, Sharma S, Khare PK, Khan ML (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28(8):2405–2429

    Article  Google Scholar 

  • Dunbar J et al (2012) Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environ Microbiol 14:1145–1158

    Article  CAS  PubMed  Google Scholar 

  • Escalante-Espinosa E, Gallegos-Martínez ME, Favela-Torres E, Gutiérrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59(3):405–413

    Article  CAS  PubMed  Google Scholar 

  • Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank AC, Saldierna Guzmán JP, Shay JE (2017) Transmission of bacterial endophytes. Microorganisms 5(4):70

    Article  PubMed Central  CAS  Google Scholar 

  • Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3(4):395–398

    Article  CAS  Google Scholar 

  • Friedman J, Higgins LM, Gore J (2017) Community structure follows simple assembly rules in microbial microcosms. Nat Ecol Evol 1:109

    Article  PubMed  Google Scholar 

  • Frommel MI, Pazos GS, Nowak J (1991) Plant growth stimulation and biocontrol of Fusarium wilt (Fusarium oxysporum f. sp. lycopersici) by coinoculation of tomato seeds with Serratia plymuthica and Pseudomonas sp. Fitopatologia 26:6673

    Google Scholar 

  • Fujiyama H (2019) Toward sustainable dryland agriculture-preventing salt accumulation in soil and remediating salt-affected soil. Ghodo Publisher, pp 185–195

    Google Scholar 

  • Ghazali FM, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegradation 54(1):6167

    Article  CAS  Google Scholar 

  • Gond SK, Torres MS, Bergen MS, Helsel Z, White JF (2015) Induction of salt tolerance and upregulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60:392–399

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:18

    Article  Google Scholar 

  • Gottfried M, Pauli H, Futschik A, Diğerleri VE (2012) Dağ bitki örtüsünün iklim değişikliğine kıta çapında tepkisi. Nat Clim Chang 2:111–115

    Article  Google Scholar 

  • Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A et al (2016) Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol 7:214. https://doi.org/10.3389/fmicb.2016.00214

    Article  PubMed  PubMed Central  Google Scholar 

  • Grattan SR, Grieve CM (1999) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York

    Google Scholar 

  • Grobelak A, Kokot P, Świątek J, Jaskulak M, Rorat A (2018) Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals. J Ecol Eng 19(5):150–157

    Article  Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  • Guttman DS, Mchardy AC, SchulzeLefert P (2014) Microbial genome enabled insights into plant microorganism interactions. Nat Rev Genet 15:797–813

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):111

    Article  Google Scholar 

  • Han QQ, Lü XP, Bai JP, Qiao Y, Paré PW, Wang SM et al (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:525

    PubMed  PubMed Central  Google Scholar 

  • Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, Bonilla G, Kar A, Leiby N, Mehta P, Marx CJ, Segre D (2014) Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 7:1104–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashmi I, Paul C, AlDourobi A, Sandoz F, Deschamps P, Junier T, Junier P, Bindschedler S (2019) Comparison of the plant growth promotion performance of a consortium of Bacilli inoculated as endospores or as vegetative cells. FEMS Microbiol Ecol 95(11):fiz147

    Article  CAS  PubMed  Google Scholar 

  • Hayden HL, Mele PM, Bougoure DS, Allan CY, Norng S, Piceno YM, Brodie EL, Desantis TZ, Andersen GL, Williams AL, Hovenden MJ (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ Microbiol 14:3081–3096

    Article  CAS  PubMed  Google Scholar 

  • He F, Hu W, Li Y (2004) Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere 57(4):293301

    Article  CAS  Google Scholar 

  • He W, Megharaj M, Wu CY, Subashchandrabose SR, Dai CC (2020) Endophyte assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants. Crit Rev Biotechnol 40(1):3145

    Article  CAS  Google Scholar 

  • Heinze J, Gensch S, Weber E, Joshi J (2016) Soil temperature modifies effects of soil biota on plant growth. J Plant Ecol 10(5):808–821

    Google Scholar 

  • Hesselsoe M, Boysen S, Iversen N, Jørgensen L, Murrell JC, McDonald I, Radajewski S, Thestrup H, Roslev P (2005) Degradation of organic pollutants by methane grown microbial consortia. Biodegradation 16(5):435448

    Article  CAS  Google Scholar 

  • Hirt H (2020) Healthy soils for healthy plants for healthy humans: how beneficial microbes in the soil, food and gut are interconnected and how agriculture can contribute to human health. EMBO Rep 21(8):e51069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4(8):1199–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Hori Y, Stuhlberger C, Simonett O (2011) Desertification: a visual synthesis, United Nations Convention to Combat Desertification (UNCCD), ISBN: 978-92-95043-49-7

    Google Scholar 

  • Hu C, Delgado JA, Zhang X, Ma L (2005) Assessment of groundwater use by wheat (Triticum aestivum L.) in the Luancheng Xian Region and potential implications for water conservation in the Northwestern North China Plain. J Soil Water Conserv 60(2):80–88

    Google Scholar 

  • Hussain F, Hussain I, Khan AHA, Muhammad YS, Iqbal M, Soja G, Reichenauer TG, Zeshan, Yousaf S (2018) Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ Exp Bot 153:8088

    Article  CAS  Google Scholar 

  • IEA (2017) Coal 2017: analysis and forecasts to 2022. IEA, Paris

    Google Scholar 

  • Jacoby B (1999) Mechanisms involved in salt tolerance of plants. In: Handbook of plant and crop stress, 2nd edn. Marcel Dekker, New York. ISBN: 0824719484, p 108

    Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2013) Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. J Plant Growth Regul 32(2):388–398

    Article  CAS  Google Scholar 

  • Janzen RA, Rood SB, Dormaar JF, McGill WB (1992) Azospirillum brasilense produces gibberellin in pure culture on chemically defined medium and in coculture on straw. Soil Biol Biochem 24:1061–1064

    Article  CAS  Google Scholar 

  • Jochum MD, McWilliams KL, Pierson EA, Jo YK (2019) Host mediated microbiome engineering (HMME) of drought tolerance in the wheat rhizosphere. PLoS One. https://doi.org/10.1371/journal.pone.0225933

  • Jones P, Garcia BJ, Furches A, Tuskan GA, Jacobson D (2019) Plant host associated mechanisms for microbial selection [Review]. Front Plant Sci 10:862. English

    Article  PubMed  PubMed Central  Google Scholar 

  • Kannan V, Sureendar R (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49(2):158–164

    Article  CAS  PubMed  Google Scholar 

  • Kathrin PA, Bernd W, Rolf D, Peter M (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884

    Article  CAS  Google Scholar 

  • Kehe J, Kulesa A, Ortiz A, Ackerman CM, Thakku SG, Sellers D, Kuehn S, Gore J, Friedman J, Blainey PC (2019) Massively parallel screening of synthetic microbial communities. Proc Natl Acad Sci U S A 116(26):12804–12809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna K, Kohli SK, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Alosaimi GS, Ahmad P (2019) Microbial fortification improved photosynthetic efficiency and secondary metabolism in Lycopersicon esculentum plants under Cd stress. Biomol Ther 9(10):581

    CAS  Google Scholar 

  • Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by upregulation of conserved salinity responsive factors in plants. Mol Cell Biol 37:109–117

    Google Scholar 

  • Korenblum E, Aharoni A (2019) Phytobiome metabolism: beneficial soil microbes steer crop plants’ secondary metabolism. Pest Manag Sci 75(9):2378–2384

    CAS  PubMed  Google Scholar 

  • Langille MG, Zaneveld J, Caporaso JG, Mcdonald D, Knights D, Reyes JA et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langley JA, Hungate BA (2014) Plant community feedbacks and long-term ecosystem responses to multifactored global change. AoB Plants 6:12

    Article  Google Scholar 

  • Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci U S A 109:14058–14062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EY, Lim JS, Oh KH, Lee JY, Kim SK, Lee YK, Kim K (2008) Removal of heavy metals by an enriched consortium. J Microbiol 46(1):2328

    Article  CAS  Google Scholar 

  • Li J, Wu C, Chen S, Lu Q, Shim H, Huang X, Jia C, Wang S (2020) Enriching indigenous microbial consortia as a promising strategy for xenobiotics’ cleanup. J Clean Prod 261:121234

    Article  CAS  Google Scholar 

  • Lipson DA, Wilson RF, Oechel WC (2005) Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem. Appl Environ Microbiol 71(12):8573–8580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y (2007) Terrestrial carbon cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712

    Article  Google Scholar 

  • Ma J, Wang S, Xue L, Liu D, Zhu X, Ma J, Huang C, Yu H, Jiang S (2017) Research of the impact of elevated CO2 on soil microbial diversity. Energy Procedia 114:3070–3076

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mahmood A, Kataoka R (2019) Application of endophytes through seed priming. In: Hasanuzzaman M, Fotopoulos V (eds) Priming and pretreatment of seeds and seedlings: implication in plant stress tolerance and enhancing productivity in crop plants. Singapore, Springer, pp 509–521

    Chapter  Google Scholar 

  • Mahmood A, Kataoka R (2020) Metabolite profiling reveals a complex response of plants to application of plant growth promoting endophytic bacteria. Microbiol Res 234:126421

    Article  CAS  PubMed  Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92(8):fiw112

    Article  PubMed  CAS  Google Scholar 

  • Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (2018) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. World Meteorological Organization Technical Document

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mcgrath KC, Mondav R, Sintrajaya R, Slattery B, Schmidt S, Schenk PM (2010) Development of an environmental functional gene microarray for soil microbial communities. Appl Environ Microbiol 76:7161–7170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcole S (2018) Fourth warmest year in continued warming trend, according to NASA, NOAA

    Google Scholar 

  • Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID (2015) Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Front Microbiol 6:1450

    Article  PubMed  PubMed Central  Google Scholar 

  • Migahed F, Abdelrazak A, Fawzy G (2017) Batch and continuous removal of heavy metals from industrial effluents using microbial consortia. Int J Environ Sci Technol 14(6):1169–1180

    Article  CAS  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms [Mini Review]. Front Microbiol 8:1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz R, Alvarez MT, Muñoz A, Terrazas E, Guieysse B, Mattiasson B (2006) Sequential removal of heavy metals ions and organic pollutants using an algal bacterial consortium. Chemosphere 63(6):903911

    Article  CAS  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycine betaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen evolving complex. FEBS Lett 296:187–189

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  CAS  Google Scholar 

  • Navarro-Torre S, Mateos-Naranjo E, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2016) Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Mar Pollut Bull 110(1):133–142

    Article  CAS  PubMed  Google Scholar 

  • Naz I, Bano A, Ul Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8(21)

    Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orozco Mosqueda MC, RochaGranados MC, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth promoting mechanisms. Microbiol Res 208:2531

    Article  CAS  Google Scholar 

  • Paul D, Harshad L (2014) Plant growth promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, Clark TD, Colwell RK, Danielsen F, Evengård B (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332):eaai9214

    Article  PubMed  CAS  Google Scholar 

  • Pietikäinen J, Pettersson M, Bååth E (2005) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol 52(1):49–58

    Article  PubMed  CAS  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impacts of salinity and agricultural ecosystem. In: Läuchli A, Lüttge U (eds) Salinity: environment plants molecules. Kluwer Academic, The Netherlands, pp 3–20, 203–229

    Google Scholar 

  • Purahong W, Schloter M, Pecyna MJ, Kapturska D, Däumlich V, Mital S et al (2014) Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in central Europe. Sci Rep 4:7014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puschenreiter M, Horak O, Friesl W, Hartl W (2005) Low cost agricultural measures to reduce heavy metal transfer into the food chain–a review. Plant Soil Environ 51(1):111

    Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome based solutions for saline agriculture. Biotechnol Adv 34:1245–1259

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Miao Q, Feng W, Wang Y, Zhu X, Xing K et al (2015) Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Appl Soil Ecol 93:47–55. https://doi.org/10.1016/j.apsoil.2015.04.004

    Article  Google Scholar 

  • Raklami A, Oufdou K, Tahiri A-I, Mateos-Naranjo E, Navarro-Torre S, Rodríguez-Llorente ID, Meddich A, Redondo-Gómez S, Pajuelo E (2019) Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat- and metallo-resistant PGPR. Microorganisms 7(7):212

    Article  CAS  PubMed Central  Google Scholar 

  • Ren XM, Guo SJ, Tian W, Chen Y, Han H, Chen E, Li BL, Li YY, Chen ZJ (2019) Effects of plant growth promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu contaminated agricultural soil. Front Microbiol 10(1455) English

    Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67(7):3208–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roell GW, Zha J, Carr RR, Koffas MA, Fong SS, Tang YJ (2019) Engineering microbial consortia by division of labor. Microb Cell Factories 18(1):35

    Article  Google Scholar 

  • Roman-Ponce B, Reza-Vázquez DM, Gutiérrez-Paredes S, De Haro-Cruz MJ, Maldonado-Hernández J, Bahena-Osorio Y, Estrada-De Los Santos P, Wang ET, Vásquez-Murrieta MS (2017) Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination. Pedosphere 27(3):511–526

    Article  CAS  Google Scholar 

  • Rosier A, Bishnoi U, Lakshmanan V, Sherrier DJ, Bais HP (2016) A perspective on interkingdom signaling in plant beneficial microbe interactions. Plant Mol Biol 90:537–548

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plant. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL, Bruce NC (2019) Right on target: using plants and microbes to remediate explosives. Int J Phytoremediation 21(11):1051–1064

    Article  CAS  PubMed  Google Scholar 

  • Said BS, Or D (2017) Synthetic microbial ecology: engineering habitats for modular consortia [hypothesis and theory]. Front Microbiol 8(1125) English

    Google Scholar 

  • Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root associated bacteria rescue a plant from a sudden wilt disease that emerged during continuous cropping. Proc Natl Acad Sci U S A 112:5013–5020

    Article  CAS  Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:2533

    Article  CAS  Google Scholar 

  • Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12

    Article  CAS  PubMed  Google Scholar 

  • Shahzad A, Saddiqui S, Bano A (2016) The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge. Int J Phytoremediation 18(5):521–526

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:2424. eng

    Article  Google Scholar 

  • Shilev S, Babrikova I, Babrikov T (2020) Consortium of plant growth-promoting bacteria improves spinach (Spinacia oleracea L.) growth under heavy metal stress conditions. J Chem Technol Biotechnol 95(4):932–939

    CAS  Google Scholar 

  • Silambarasan S, Logeswari P, Cornejo P, Kannan VR (2019) Role of plant growth–promoting rhizobacterial consortium in improving the Vigna radiata growth and alleviation of aluminum and drought stresses. Environ Sci Pollut Res 26(27):27647–27659

    Article  CAS  Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Snow DD, Cassada DA, Biswas S, Malakar A, D’Alessio M, Carter LJ, Johnson RD, Sallach JB (2019) Detection, occurrence, and fate of emerging contaminants in agricultural environments. Water Environ Res 91(10):1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Souza RC, Hungria M, Cantão ME, Vasconcelos ATR, Nogueira MA, Vicente VA (2015) Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes. Appl Soil Ecol 86:106–112

    Article  Google Scholar 

  • Sprocati AR, Alisi C, Segre L, Tasso F, Galletti M, Cremisini C (2006) Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Sci Total Environ 366(2):649–658

    Article  CAS  PubMed  Google Scholar 

  • Stanley CE, van der Heijden MGA (2017) Microbiome-on-a-chip: new frontiers in plant–microbiota research. Trends Microbiol 25(8):610–613

    Article  CAS  PubMed  Google Scholar 

  • Sukweenadhi J, Kim YJ, Choi ES, Koh SC, Lee SW, Kim YJ et al (2015) Paenibacillus yonginensis DCY84(T) induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiol Res 172:7–15

    Article  CAS  PubMed  Google Scholar 

  • Szabolcs I (1994) Soils and salinisation. In: Pessarakali M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 3–11

    Google Scholar 

  • The Food and Agriculture Organization of the United Nations (FAO) (2002) Crops and drops: making the best use of water for agriculture. FAO, Rome, Italy. http://www.fao.org/docrep/w5146e/w5146e0a.htm

    Google Scholar 

  • Thijs S, Van Dillewijn P, Sillen W, Truyens S, Holtappels M, D’Haen J, Carleer R, Weyens N, Ameloot M, Ramos J-L et al (2014a) Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil 385(1):15–36

    Article  CAS  Google Scholar 

  • Thijs S, Weyens N, Sillen W, Gkorezis P, Carleer R, Vangronsveld J (2014b) Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil. Microb Biotechnol 7(4):294–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai KN, Lin SH, Liu WC, Wang D (2015) Inferring microbial interaction network from microbiome data using RMN algorithm. BMC Syst Biol 9:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:2840

    Article  CAS  Google Scholar 

  • United Nations (2017) In: Department of Economics and Social Affairs PD (ed) World population prospects: the 2017 revision, key findings and advance tables. United Nations, New York

    Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt tolerant plant growth promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293

    Article  CAS  PubMed  Google Scholar 

  • Van Elsas JD, Kijkstra AF, Govaert JM, van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbial Ecol 38:151–160

    Article  Google Scholar 

  • Vryzas Z (2018) Pesticide fate in soil sediment water environment in relation to contamination preventing actions. Curr Opin Environ Sci Health 4:59

    Google Scholar 

  • Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun 10:4841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang RC, Okamoto M, Xing XJ, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose6phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang C, Gao Y-L, Wang Y-P, Guo J-H (2016) A consortium of three plant growth-promoting Rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. J Plant Growth Regul 35(1):54–64

    Article  CAS  Google Scholar 

  • Wang C, Gu L, Ge S, Liu X, Zhang X, Chen X (2019) Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene Cr (VI) cocontaminated soil. Environ Technol 40(18):2345–2353

    Article  CAS  PubMed  Google Scholar 

  • Wang KD, Borrego EJ, Kenerley CM, Kolomiets MV (2020) Oxylipins other than jasmonic acid are xylem resident signals regulating systemic resistance induced by Trichoderma virens in maize. Plant Cell 32(1):166–185

    Article  CAS  PubMed  Google Scholar 

  • Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Chaytor S, Colbourn T, Collins M, Cooper A (2015) Health and climate change: policy responses to protect public health. Lancet 386(10006):1861–1914

    Article  PubMed  Google Scholar 

  • Wei Z, Gu Y, Friman VP, Kowalchuk GA, Xu Y, Shen Q, Jousset A (2019) Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv 5(9):eaaw0759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiewióra B, Żurek G, Pańka D (2015) Is the vertical transmission of Neotyphodium lolii in perennial ryegrass the only possible way to the spread of endophytes? PLoS One 10(2):e0117231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo SL, Pepe O (2018) Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture [opinion]. Front Plant Sci 9:1801

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia M, Chakraborty R, Terry N, Singh RP, Fu D (2020) Promotion of saltgrass growth in a saline petroleum hydrocarbons contaminated soil using a plant growth promoting bacterial consortium. Int Biodeterior Biodegradation 146:104808

    Article  CAS  Google Scholar 

  • Yang S, Zheng Q, Yuan M, Shi Z, Chiariello NR, Docherty KM, Dong S, Field CB, Gu Y, Gutknecht J et al (2019) Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials. Sci Total Environ 652:1474–1481

    Article  PubMed  CAS  Google Scholar 

  • Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Zhang C (2017) Biological technologies for the remediation of cocontaminated soil. Crit Rev Biotechnol 37(8):1062–1076

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G (2020) How plant hormones mediate salt stress responses. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2020.06.008

  • Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping nonhost plants to withstand salinity. Sci Rep 6:32467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Brunel C, van Kleunen M, Li J, Jin Z (2019) Salinity induced changes in the rhizosphere microbiome improve salt tolerance of Hibiscus hamabo. Plant Soil 443:525–537

    Article  CAS  Google Scholar 

  • Zawoznik MS, Ameneiros M, Benavides MP, Vázquez S, Groppa MD (2011) Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Appl Microbiol Biotechnol 90:1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744

    Article  PubMed  CAS  Google Scholar 

  • Zhang L-N, Wang D-C, Hu Q, Dai X-Q, Xie Y-S, Li Q, Liu H-M, Guo J-H (2019) Consortium of plant growth-promoting Rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front Microbiol 10(1668)

    Google Scholar 

  • Zhang H, Yuan X, Xiong T, Wang H, Jiang L (2020) Bioremediation of cocontaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chem Eng J 398:125657

    Article  CAS  Google Scholar 

  • Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 6(1):e02288–e02214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9

    Article  Google Scholar 

  • Zuluaga MYA, Lima Milani KM, Azeredo Gonçalves LS, Martinez de Oliveira AL (2020) Diversity and plant growth promoting functions of diazotrophic/N scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PLoS One 15(1):e0227422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Kataoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, A. et al. (2022). Use of Synthetic Ecology Approach in Exploring Plant–Microbial Interactions Under Habitat-Imposed Stresses. In: Vaishnav, A., Arya, S., Choudhary, D.K. (eds) Plant Stress Mitigators. Springer, Singapore. https://doi.org/10.1007/978-981-16-7759-5_18

Download citation

Publish with us

Policies and ethics