Skip to main content

Role of Immunotherapy in Ameliorating Proteopathic Dementia

  • Chapter
  • First Online:
Current Thoughts on Dementia

Abstract

Dementia is a syndrome that marks a significant cognitive decline with an estimated 50 million populations being affected by this globally and addition of ten million cases every year predicting a compelling threat to society. It commonly involves the neuronal accumulation of proteins leading to protein toxicity, transmission interruptions, cognitive dysfunction, and eventually neuronal death. Currently, novel techniques using different protocols for early theragnostic and prognosis of this age-related disorder have been analyzed to develop efficient and reproducible combinatorial and biologically viable options. Subsequently, immunotherapies have gained much importance among the researchers with promising leads to control and avert the dementing process, while specifically targeting the senile plaques and protein accumulation to control neurotoxicity in neurodegenerative disorders (NDDs). Therefore, in this chapter authors have explored all the reported and possible immunologically applicable options for improving the further cognitive decline in dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostinho P, Cunha A, R, Oliveira C. (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778

    Article  CAS  PubMed  Google Scholar 

  • Arasi S, Caminiti L, Crisafulli G, Pajno GB (2018) A general strategy for de novo immunotherapy design: the active treatment of food allergy. Expert Rev Clin Immunol 14(8):665–671

    Article  CAS  PubMed  Google Scholar 

  • Bartley MG, Marquardt K, Kirchhof D, Wilkins HM, Patterson D, Linseman DA (2012) Overexpression of amyloid-β protein precursor induces mitochondrial oxidative stress and activates the intrinsic apoptotic cascade. J Alzheimers Dis 28(4):855–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg EL, Yang J, Melrose J, Nguyen D, Privat S, Rosler E et al (2010) Chemical target and pathway toxicity mechanisms defined in primary human cell systems. J Pharmacol Toxicol Methods 61(1):3–15

    Article  CAS  PubMed  Google Scholar 

  • Berg RM, Møller K, Bailey DM (2011) Neuro-oxidative-nitrosative stress in sepsis. J Cereb Blood Flow Metab 31(7):1532–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA et al (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110

    Article  CAS  PubMed  Google Scholar 

  • Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA (2014) Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabet Endocrinol 2(3):246–255

    Article  Google Scholar 

  • Boche D, Denham N, Holmes C, Nicoll JA (2010) Neuropathology after active Aβ42 immunotherapy: implications for Alzheimer’s disease pathogenesis. Acta Neuropathol 120(3):369–384

    Article  CAS  PubMed  Google Scholar 

  • Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E et al (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17(9):660–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutajangout A, Quartermain D, Sigurdsson EM (2010) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30(49):16559–16566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen A, Knapp P, Gillespie D, Nicolson DJ, Vail A (2011) Non-pharmacological interventions for perceptual disorders following stroke and other adult-acquired, non-progressive brain injury. Cochrane Database Syst Rev 2011(4):CD007039

    PubMed Central  Google Scholar 

  • Buchanan JA, Christenson AM, Ostrom C, Hofman N (2007) Non-pharmacological interventions for aggression in persons with dementia: a review of the literature. Behav Anal Today 8(4):413

    Article  Google Scholar 

  • Bullock L, Bedson J, Jordan JL, Bartlam B, Chew-Graham CA, Campbell P (2019) Pain assessment and pain treatment for community-dwelling people with dementia: a systematic review and narrative synthesis. Int J Geriatr Psychiatry 34(6):807–821

    Article  PubMed  Google Scholar 

  • Canessa CM, Horisberger J-D, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361(6411):467–470

    Article  CAS  PubMed  Google Scholar 

  • Casadesus G, Takeda A, Perry G (2004) Challenging the amyloid cascade hypothesis: senile plaques and amyloid-β as protective adaptations to Alzheimer disease. Ann N Y Acad Sci 1019:1–4

    Article  PubMed  CAS  Google Scholar 

  • Ceyzériat K, Zilli T, Millet P, Frisoni GB, Garibotto V, Tournier BB (2020) Learning from the past: a review of clinical trials targeting amyloid, tau and Neuroinflammation in Alzheimer’s disease. Curr Alzheimer Res 17(2):112–125

    Article  PubMed  CAS  Google Scholar 

  • Chagkutip J, Vaughan RA, Govitrapong P, Ebadi M (2003) 1-Methyl-4-phenylpyridinium-induced down-regulation of dopamine transporter function correlates with a reduction in dopamine transporter cell surface expression. Biochem Biophys Res Commun 311(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Chanier T, Chames P (2019) Nanobody engineering: toward next generation immunotherapies and immunoimaging of cancer. Antibodies 8(1):13

    Article  CAS  PubMed Central  Google Scholar 

  • Chatterjee S, Peters SA, Woodward M, Arango SM, Batty GD, Beckett N et al (2016) Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care 39(2):300–307

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman K (1993) Mechanisms and effects of lipid peroxidation. Mol Asp Med 14(3):191–197

    Article  CAS  Google Scholar 

  • Chu J, Hong NA, Masuda CA, Jenkins BV, Nelms KA, Goodnow CC et al (2009) A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proc Natl Acad Sci 106(7):2097–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung CG, Lee H, Lee SB (2018) Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 75(17):3159–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Mansfield J (2004) Nonpharmacologic interventions for inappropriate behaviors in dementia: a review, summary, and critique. Focus 9(2):361–308

    Google Scholar 

  • Collin L, Bohrmann B, Göpfert U, Oroszlan-Szovik K, Ozmen L, Grüninger F (2014) Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer‘s disease. Brain 137(10):2834–2846

    Article  PubMed  Google Scholar 

  • Cooke ML, Moyle W, Shum DH, Harrison SD, Murfield JE (2010) A randomized controlled trial exploring the effect of music on agitated behaviours and anxiety in older people with dementia. Aging Ment Health 14(8):905–916

    Article  PubMed  Google Scholar 

  • Cunningham C, Skelly DT (2012) Non-steroidal anti-inflammatory drugs and cognitive function: are prostaglandins at the heart of cognitive impairment in dementia and delirium? J Neuroimmune Pharmacol 7(1):60–73

    Article  PubMed  Google Scholar 

  • Davis PB, Morris JC, Grant E (1990) Brief screening tests versus clinical staging in senile dementia of the Alzheimer type. J Am Geriatr Soc 38(2):129–135

    Article  CAS  PubMed  Google Scholar 

  • de Haas N, de Koning C, Spilgies L, de Vries IJM, Hato SV (2016) Improving cancer immunotherapy by targeting the STATe of MDSCs. Onco Targets Ther 5(7):e1196312

    Google Scholar 

  • Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev 2016:1245049

    Google Scholar 

  • Dix TA, Aikens J (1993) Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol 6(1):2–18

    Article  CAS  PubMed  Google Scholar 

  • Douglas S, James I, Ballard C (2004) Non-pharmacological interventions in dementia. Adv Psychiatr Treat 10(3):171–177

    Article  Google Scholar 

  • Duggal NA, Niemiro G, Harridge SD, Simpson RJ, Lord JM (2019) Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol 19(9):563–572

    Article  CAS  PubMed  Google Scholar 

  • Durrenberger PF, Fernando FS, Kashefi SN, Bonnert TP, Seilhean D, Nait-Oumesmar B et al (2015) Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm 122(7):1055–1068

    Article  CAS  PubMed  Google Scholar 

  • Fenster CP, Weinsier RL, Darley-Usmar VM, Patel RP (2002) Obesity, aerobic exercise, and vascular disease: the role of oxidant stress. Obes Res 10(9):964–968

    Article  CAS  PubMed  Google Scholar 

  • Fonseca LM, Navatta ACR, Bottino CM, Miotto EC (2015) Cognitive rehabilitation of dementia in adults with down syndrome: a review of non-pharmacological interventions. Dementia Geriatric Cognitive Disorders Extra 5(3):330–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100(2):241–254

    Article  CAS  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochimica et Biophysica Acta (BBA)-Molecul Basis Dis 1822(9):1363–1373

    Article  CAS  Google Scholar 

  • Gao S, Yang D, Fang Y, Lin X, Jin X, Wang Q et al (2019) Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy. Theranostics 9(1):126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Bueno B, Caso JR, Leza JC (2008) Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 32(6):1136–1151

    Article  PubMed  CAS  Google Scholar 

  • Ghaffar O, Feinstein A (2007) The neuropsychiatry of multiple sclerosis: a review of recent developments. Curr Opin Psychiatry 20(3):278–285

    Article  PubMed  Google Scholar 

  • Gitlin LN, Winter L, Dennis MP, Hauck WW (2007) A non-pharmacological intervention to manage behavioral and psychological symptoms of dementia and reduce caregiver distress: design and methods of project ACT3. Clin Interv Aging 2(4):695

    PubMed  PubMed Central  Google Scholar 

  • Gitlin LN, Winter L, Dennis MP, Hodgson N, Hauck WW (2010) A biobehavioral home-based intervention and the Well-being of patients with dementia and their caregivers: the COPE randomized trial. JAMA 304(9):983–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guetin S, Portet F, Picot M, Pommié C, Messaoudi M, Djabelkir L et al (2009) Effect of music therapy on anxiety and depression in patients with Alzheimer’s type dementia: randomised, controlled study. Dement Geriatr Cogn Disord 28(1):36–46

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15(1):1–37

    Article  Google Scholar 

  • Gutteridge J (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41(12):1819–1828

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1978) Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: the key role of superoxide dismutase. Cell Biol Int Rep 2(2):113–128

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5):715S–725S

    Article  CAS  PubMed  Google Scholar 

  • Hanger DP, Seereeram A, Noble W (2009) Mediators of tau phosphorylation in the pathogenesis of Alzheimer’s disease. Expert Rev Neurother 9(11):1647–1666

    Article  CAS  PubMed  Google Scholar 

  • Hart S, Semple JM (1990) Neuropsychology and the dementias. Psychology Press, London

    Google Scholar 

  • Heaton RK, Ryan L, Grant I, Matthews CG (1996) Demographic influences on neuropsychological test performance. Neuropsychol Assess Neuropsychiatr Disord 2:141–163

    Google Scholar 

  • Hoffmann T, Bennett S, Koh CL, McKenna KT (2010) Occupational therapy for cognitive impairment in stroke patients. Cochrane Database Syst Rev 2010(9):CD006430

    PubMed Central  Google Scholar 

  • Hong WX, Haebe S, Lee AS, Westphalen CB, Norton JA, Jiang W et al (2020) Intratumoral immunotherapy for early-stage solid tumors. Clin Cancer Res 26(13):3091–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoozemans JJ, Van Haastert ES, Nijholt DA, Rozemuller AJ, Scheper W (2012) Activation of the unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease. Neurodegener Dis 10(1–4):212–215

    Article  CAS  PubMed  Google Scholar 

  • Horton A, Fairhurst S, Bus JS (1987) Lipid peroxidation and mechanisms of toxicity. CRC Crit Rev Toxicol 18(1):27–79

    Article  CAS  Google Scholar 

  • Hosie A, Siddiqi N, Featherstone I, Johnson M, Lawlor PG, Bush SH et al (2019) Inclusion, characteristics and outcomes of people requiring palliative care in studies of non-pharmacological interventions for delirium: a systematic review. Palliat Med 33(8):878–899

    Article  PubMed  Google Scholar 

  • Iba M, Kim C, Florio J, Mante M, Adame A, Rockenstein E et al (2020) Role of alterations in protein kinase p38γ in the pathogenesis of the synaptic pathology in dementia with Lewy bodies and α-Synuclein transgenic models. Front Neurosci 14:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishihara J, Ishihara A, Sasaki K, Lee SS-Y, Williford J-M, Yasui M et al (2019) Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Sci Transl Med 11(487):eaau3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankovic J, Goodman I, Safirstein B, Marmon TK, Schenk DB, Koller M et al (2018) Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti–α-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol 75(10):1206–1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14(3):457–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104

    Article  CAS  PubMed  Google Scholar 

  • Kaplowitz N (2002) Biochemical and cellular mechanisms of toxic liver injury. Seminars Liver Dis 22(2):137–144. 2002: Copyright© 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New …

    Article  CAS  Google Scholar 

  • Kappus H, Sies H (1981) Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia 37(12):1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis 2011:276393

    PubMed  PubMed Central  Google Scholar 

  • Kayed R, Jackson GR (2009) Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. Curr Opin Immunol 21(3):359–363

    Article  CAS  PubMed  Google Scholar 

  • Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R et al (2017) Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 9(373):eaag2196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim C, Spencer B, Rockenstein E, Yamakado H, Mante M, Adame A et al (2018) Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol Neurodegener 13(1):1–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kleinstäuber M, Witthöft M, Steffanowski A, Van Marwijk H, Hiller W, Lambert M (2015) Pharmacological interventions for somatoform disorders in adults, a Cochrane systematic review. J Psychosom Res 6(78):606–607

    Article  Google Scholar 

  • Kortylewski M, Kujawski M, Herrmann A, Yang C, Wang L, Liu Y et al (2009) Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy. Cancer Res 69(6):2497–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretzschmar D (2005) Neurodegenerative mutants in drosophila: a means to identify genes and mechanisms involved in human diseases? Invertebr Neurosci 5(3–4):97–109

    Article  CAS  Google Scholar 

  • Kwon S, Iba M, Kim C, Masliah E (2020) Immunotherapies for aging-related neurodegenerative diseases—emerging perspectives and new targets. Neurotherapeutics 17(3):935–954

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacroix R, Rozeman EA, Kreutz M, Renner K, Blank CU (2018) Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol Immunother 67(9):1331–1348

    Article  CAS  PubMed  Google Scholar 

  • Laine M, Laakso M, Vuorinen E, Rinne J (1998) Coherence and informativeness of discourse in two dementia types. J Neurolinguistics 11(1–2):79–87

    Article  Google Scholar 

  • Lall D, Baloh RH (2017) Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest 127(9):3250–3258

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehmensiek V, Tan E-M, Schwarz J, Storch A (2002) Expression of mutant α-synucleins enhances dopamine transporter-mediated MPP+ toxicity in vitro. Neuroreport 13(10):1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Lendon CL, Lynch T, Norton J, McKeel D, Busfield F, Craddock N et al (1998) Hereditary dysphasic disinhibition dementia A frontotemporal dementia linked to 17 q21--22. Neurology 50(6):1546–1555

    Article  CAS  PubMed  Google Scholar 

  • Lesch K-P, Mössner R (1998) Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? Biol Psychiatry 44(3):179–192

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Xu C, Wu X, Liu F, Du Y, Sun J et al (2015) Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience 294:193–205

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-H, Giunta B, Zhou H-D, Tan J, Wang Y-J (2012) Immunotherapy for Alzheimer disease—the challenge of adverse effects. Nat Rev Neurol 8(8):465–469

    Article  CAS  PubMed  Google Scholar 

  • Livingston G, Johnston K, Katona C, Paton J, Lyketsos CG, Psychiatry OATFotWFoB. (2005) Systematic review of psychological approaches to the management of neuropsychiatric symptoms of dementia. Am J Psychiatr 162(11):1996–2021

    Article  PubMed  Google Scholar 

  • Loureiro JC, Pais MV, Stella F, Radanovic M, Teixeira AL, Forlenza OV et al (2020) Passive antiamyloid immunotherapy for Alzheimer’s disease. Curr Opin Psychiatry 33(3):284–291

    Article  PubMed  Google Scholar 

  • Cardoso SM (2011) The mitochondrial cascade hypothesis for Parkinson’s disease. Curr Pharm Des 17(31):3390–3397

    Article  CAS  PubMed  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Medina M (2011) Recent developments in tau-based therapeutics for neurodegenerative diseases. Recent Pat CNS Drug Discov 6(1):20–30

    Article  CAS  PubMed  Google Scholar 

  • Mohamed T, Shakeri A, Rao PP (2016) Amyloid cascade in Alzheimer’s disease: recent advances in medicinal chemistry. Eur J Med Chem 113:258–272

    Article  CAS  PubMed  Google Scholar 

  • Morris J, Storandt M, McKeel D, Rubin E, Price J, Grant E et al (1996) Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 46(3):707–719

    Article  CAS  PubMed  Google Scholar 

  • Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K et al (2006) Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6(5):261–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano N, Matsuda S, Ichimura M, Minami A, Ogino M, Murai T et al (2017) PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson's disease. Int J Mol Med 39(2):253–260

    Article  CAS  PubMed  Google Scholar 

  • Neal M, Wright PB (2003) Validation therapy for dementia. Cochrane Database Syst Rev 3:CD001394

    Google Scholar 

  • Neff F, Wei X, Nölker C, Bacher M, Du Y, Dodel R (2008) Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev 7(6):501–507

    Article  CAS  PubMed  Google Scholar 

  • Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R et al (2011) Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflammation 8(1):64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noman MZ, Hasmim M, Lequeux A, Xiao M, Duhem C, Chouaib S et al (2019) Improving cancer immunotherapy by targeting the hypoxic tumor microenvironment: new opportunities and challenges. Cell 8(9):1083

    Article  CAS  Google Scholar 

  • Núñez MT, Urrutia P, Mena N, Aguirre P, Tapia V, Salazar J (2012) Iron toxicity in neurodegeneration. Biometals 25(4):761–776

    Article  PubMed  CAS  Google Scholar 

  • Nyakatura EK, Soare AY, Lai JR (2017) Bispecific antibodies for viral immunotherapy. Hum Vaccin Immunother 13(4):836–842

    Article  PubMed  Google Scholar 

  • Oddo S, Vasilevko V, Caccamo A, Kitazawa M, Cribbs DH, LaFerla FM (2006) Reduction of soluble Aβ and tau, but not soluble Aβ alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem 281(51):39413–39423

    Article  CAS  PubMed  Google Scholar 

  • Pahnke J, Krohn M, Scheffler K (2009) The role of blood-brain barrier in the pathogenesis of Alzheimer dementia--implications for immunological therapies for plaque dissolution. Fortschr Neurol Psychiatr 77:S21–S24

    Article  PubMed  Google Scholar 

  • Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A et al (2016) Tau-based therapeutics for Alzheimer’s disease: active and passive immunotherapy. Immunotherapy 8(9):1119–1134

    Article  CAS  PubMed  Google Scholar 

  • Pfaar O, Alvaro M, Cardona V, Hamelmann E, Mösges R, Kleine-Tebbe J (2018) Clinical trials in allergen immunotherapy: current concepts and future needs. Allergy 73(9):1775–1783

    Article  CAS  PubMed  Google Scholar 

  • Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41(6):1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Pittock SJ, Balice-Gordon R (2012) Emerging synaptic biomarkers in autoimmune dementia: NMDARs targeted by IgA. Neurology 78(22):1710–1711. AAN Enterprises

    Article  PubMed  Google Scholar 

  • Plotkin SS, Cashman NR (2020) Passive immunotherapies targeting Aβ and tau in Alzheimer’s disease. Neurobiol Dis 144:105010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pooler AM, Noble W, Hanger DP (2014) A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology 76:1–8

    Article  CAS  PubMed  Google Scholar 

  • Potter H, Wisniewski T (2012) Apolipoprotein E: Essential catalyst of the Alzheimer amyloid cascade. Int J Alzheimers Dis 2012:489428

    PubMed  PubMed Central  Google Scholar 

  • Prinz PN, Vitaliano PP, Vitiello MV, Bokan J, Raskind M, Peskind E et al (1982) Sleep, EEG and mental function changes in senile dementia of the Alzheimer's type. Neurobiol Aging 3(4):361–370

    Article  CAS  PubMed  Google Scholar 

  • Qaseem A, Wilt TJ, Kansagara D, Horwitch C, Barry MJ, Forciea MA (2018) Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: a guidance statement update from the American College of Physicians. Ann Intern Med 168(8):569–576

    Article  PubMed  Google Scholar 

  • Remington R, Abdallah L, Melillo KD, Flanagan J (2006) Managing problem behaviors associated with dementia. Rehabil Nurs 31(5):186–192

    Article  PubMed  Google Scholar 

  • Rizzi L, Rosset I, Roriz-Cruz M (2014) Global epidemiology of dementia: Alzheimer’s and vascular types. BioMed Res Int 2014:908915

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross CA, Poirier MA (2005) What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6(11):891–898

    Article  CAS  PubMed  Google Scholar 

  • Rubin EH, Morris JC, Berg L (1987) The progression of personality changes in senile dementia of the Alzheimer’s type. J Am Geriatr Soc 35(8):721–725

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Ojala J, Kaarniranta K, Hiltunen M, Soininen H (2011) Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease. Prog Neurobiol 93(1):99–110

    Article  CAS  PubMed  Google Scholar 

  • Schilling S, Rahfeld J-U, Lues I, Lemere CA (2018) Passive Aβ immunotherapy: current achievements and future perspectives. Molecules 23(5):1068

    Article  PubMed Central  CAS  Google Scholar 

  • Schulz R, O’Brien A, Czaja S, Ory M, Norris R, Martire LM et al (2002) Dementia caregiver intervention research: in search of clinical significance. The Gerontologist 42(5):589–602

    Article  PubMed  Google Scholar 

  • Seimetz D, Lindhofer H, Bokemeyer C (2010) Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM× anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 36(6):458–467

    Article  CAS  PubMed  Google Scholar 

  • Sharma GS, Kumar T, Dar TA, Singh LR (2015) Protein N-homocysteinylation: from cellular toxicity to neurodegeneration. Biochimica et Biophysica Acta (BBA)-General Subjects 1850(11):2239–2245

    Article  CAS  Google Scholar 

  • Sigurdsson EM (2008) Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis 15(2):157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikriwal D, Ghosh P, Batra JK (2008) Ribosome inactivating protein saporin induces apoptosis through mitochondrial cascade, independent of translation inhibition. Int J Biochem Cell Biol 40(12):2880–2888

    Article  CAS  PubMed  Google Scholar 

  • Sorkina T, Hoover BR, Zahniser NR, Sorkin A (2005) Constitutive and protein kinase C-induced internalization of the dopamine transporter is mediated by a clathrin-dependent mechanism. Traffic 6(2):157–170

    Article  CAS  PubMed  Google Scholar 

  • Stancu I-C, Vasconcelos B, Terwel D, Dewachter I (2014) Models of β-amyloid induced tau-pathology: the long and “folded” road to understand the mechanism. Mol Neurodegener 9(1):1–14

    Article  CAS  Google Scholar 

  • Steiner JA, Quansah E, Brundin P (2018) The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res 373(1):161–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephans SE, Miller GW, Levey AI, Greenamyre JT (2002) Acute mitochondrial and chronic toxicological effects of 1-methyl-4-phenylpyridinium in human neuroblastoma cells. Neurotoxicology 23(4–5):569–580

    Article  CAS  PubMed  Google Scholar 

  • Sumner IL, Edwards RA, Asuni AA, Teeling JL (2018) Antibody engineering for optimized immunotherapy in Alzheimer’s disease. Front Neurosci 12:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(s2):S265–SS79

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu Y, Ho G, Koike W, Sugama S, Takenouchi T, Waragai M et al (2017) Combined immunotherapy with “anti-insulin resistance” therapy as a novel therapeutic strategy against neurodegenerative diseases. NPJ Parkinson’s Dis 3(1):1–10

    Google Scholar 

  • Tamir S, Izrael S, Vaya J (2002) The effect of oxidative stress on ERα and ERβ expression. J Steroid Biochem Mol Biol 81(4–5):327–332

    Article  CAS  PubMed  Google Scholar 

  • Taylor JM, Main BS, Crack PJ (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 62(5):803–819

    Article  CAS  PubMed  Google Scholar 

  • Tiiman A, Palumaa P, Tougu V (2013) The missing link in the amyloid cascade of Alzheimer’s disease–metal ions. Neurochem Int 62(4):367–378

    Article  CAS  PubMed  Google Scholar 

  • Tran HT, Chung CH-Y, Iba M, Zhang B, Trojanowski JQ, Luk KC et al (2014) α-Synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep 7(6):2054–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi RK, Tiwari SC (2009) Psychotherapeutic approaches in the management of elderlies with dementia an overview. Delhi Psychiatry Jl 12(1):31–41

    Google Scholar 

  • Troquier L, Caillierez R, Burnouf S, F. J Fernandez-Gomez, Grosjean M-E, Zommer N et al (2012) Targeting phospho-Ser422 by active tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res 9(4):397–405

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner S (2005) Behavioural symptoms of dementia in residential settings: a selective review of non-pharmacological interventions. Aging Ment Health 9(2):93–104

    Article  CAS  PubMed  Google Scholar 

  • Valera E, Masliah E (2013) Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol Ther 138(3):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valera E, Spencer B, Masliah E (2016) Immunotherapeutic approaches targeting amyloid-β, α-synuclein, and tau for the treatment of neurodegenerative disorders. Neurotherapeutics 13(1):179–189

    Article  CAS  PubMed  Google Scholar 

  • Vander Zanden CM, Chi EY (2020) Passive immunotherapies targeting amyloid beta and tau oligomers in Alzheimer’s disease. J Pharm Sci 109(1):68–73

    Article  CAS  PubMed  Google Scholar 

  • Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velayudhan L, Ffytche D, Ballard C, Aarsland D (2017) New therapeutic strategies for Lewy body dementias. Curr Neurol Neurosci Rep 17(9):68

    Article  PubMed  CAS  Google Scholar 

  • Verma M, Vats A, Taneja V (2015) Toxic species in amyloid disorders: oligomers or mature fibrils. Ann Indian Acad Neurol 18(2):138

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma V, Cushman TR, Selek U, Tang C, Welsh JW (2018) Safety of combined immunotherapy and thoracic radiation therapy: analysis of 3 single-institutional phase I/II trials. Int J Radiat Oncol Biol Phys 101(5):1141–1148

    Article  PubMed  Google Scholar 

  • Vincent A, Bien CG, Irani SR, Waters P (2011) Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 10(8):759–772

    Article  CAS  PubMed  Google Scholar 

  • Wagenmann M, Worm M, Akboga Y, Karjalainen M, Hohlfeld JM (2019) Randomized immunotherapy trial in dual-allergic patients using “active allergen placebo” as control. Allergy 74(8):1480–1489

    Article  CAS  PubMed  Google Scholar 

  • Wang J-Y, Wen L-L, Huang Y-N, Chen Y-T, Ku M-C (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of gliamediated inflammation. Curr Pharm Des 12(27):3521–3533

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Colonna M (2019) Microglia in Alzheimer's disease: a target for immunotherapy. J Leukoc Biol 106(1):219–227

    CAS  PubMed  Google Scholar 

  • Wang Z, Gao G, Duan C, Yang H (2019) Progress of immunotherapy of anti-α-synuclein in Parkinson’s disease. Biomed Pharmacother 115:108843

    Article  CAS  PubMed  Google Scholar 

  • Warrick JM, Morabito LM, Bilen J, Gordesky-Gold B, Faust LZ, Paulson HL et al (2005) Ataxin-3 suppresses polyglutamine neurodegeneration in drosophila by a ubiquitin-associated mechanism. Mol Cell 18(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Himeda T, Araki T (2005) Mechanisms of MPTP toxicity and their implications for therapy of Parkinson's disease. Med Sci Monit 11(1):RA17–RA23

    CAS  PubMed  Google Scholar 

  • Wenning GK, Jellinger KA (2005) The role of α-synuclein and tau in neurodegenerative movement disorders. Curr Opin Neurol 18(4):357–362

    Article  CAS  PubMed  Google Scholar 

  • Wong YC, Krainc D (2017) α-Synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23(2):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Tsukagoshi H, Otomo E, Hayakawa M (1987) Cerebral amyloid angiopathy in the aged. J Neurol 234(6):371–376

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Peng J, Shi K, Xiao Y, Liu Q, Han R et al (2019) Rationally designed peptide-conjugated gold/platinum nanosystem with active tumor-targeting for enhancing tumor photothermal-immunotherapy. J Control Release 308:29–43

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Yan H, Zhou J, Yang X, Lu Y, Han Y (2019) A circuit view of deep brain stimulation in Alzheimer’s disease and the possible mechanisms. Mol Neurodegener 14(1):1–12

    Article  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  CAS  PubMed  Google Scholar 

  • Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ et al (2015) Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res 21(24):5427–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao A, Tohidkia MR, Siegel DL, Coukos G, Omidi Y (2016) Phage antibody display libraries: a powerful antibody discovery platform for immunotherapy. Crit Rev Biotechnol 36(2):276–289

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M. et al. (2022). Role of Immunotherapy in Ameliorating Proteopathic Dementia. In: Ashraf, G.M., Uddin, M.S. (eds) Current Thoughts on Dementia. Springer, Singapore. https://doi.org/10.1007/978-981-16-7606-2_16

Download citation

Publish with us

Policies and ethics