Skip to main content

Tuning Wavelength of the Localized Mode Microcavity by Applying Different Oxygen Flows

  • Conference paper
  • First Online:
Proceedings of the Third International Conference on Trends in Computational and Cognitive Engineering

Abstract

In this work, porous Si-SiO2 UV microcavities were obtained by applying two stages of dry oxidation and different oxygen flows. In this way, we observed a maximum wavelength shift (134 nm) of the localized mode microcavity to higher energy when a low oxygen flow was used to obtain porous silicon microcavities. It also depicted a wavelength shift of 121 nm when a maximum oxygen flow was applied. We used an effective medium model to predict the refractive index for two media (silicon and air) and three media (silicon, silicon dioxide, and air) components. The result showed that UV microcavities obtained with higher oxygen flow absorb more UV light. Thus, there was less SiO2 formation, and consequently the optical absorption increased. Besides, a decrease of the PBG bandwidth was achieved by incorporating SiO2 within the porous silicon microcavities. This bandwidth decrease happened because there was less contrast between the high refractive index and the low index of porous Si-SiO2 layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals. Princeton University Press, Princeton (2011)

    Google Scholar 

  2. Ocier, C.R., Krueger, N.A., Zhou, W., Braun, P.V.: Tunable visibly transparent optics derived from porous silicon. ACS Photonics 4(4), 909–914 (2017)

    Article  Google Scholar 

  3. Kittle, J.D., Gofus, J.S., III., Abel, A.N., Evans, B.D.: Additive combination of spectra reflected from porous silicon and carbon/porous silicon rugate filters to improve vapor selectivity. ACS Omega 5(31), 19820–19826 (2020)

    Article  Google Scholar 

  4. Pérez, K.S., Estevez, J.O., Méndez-Blas, A., Arriaga, J., Palestino, G., Mora-Ramos, M.E.: Tunable resonance transmission modes in hybrid heterostructures based on porous silicon. Nanoscale Res. Lett. 7(1), 1–8 (2012)

    Article  Google Scholar 

  5. Vyunishev, A.M., Pankin, P.S., Svyakhovskiy, S.E., Timofeev, I.V., Vetrov, S.Y.: Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps. Opt. Lett. 42(18), 3602–3605 (2017)

    Article  Google Scholar 

  6. Jimenéz-Vivanco, M.R., García, G., Carrillo, J., Agarwal, V., Díaz-Becerril, T., Doti, R., et al.: Porous Si-SiO 2 based UV microcavities. Sci. Rep. 10(1), 1–21 (2020)

    Article  Google Scholar 

  7. Ghulinyan, M., Oton, C., Bonetti, G., Gaburro, Z., Pavesi, L.: Free-standing porous silicon single and multiple optical cavities. J. Appl. Phys. 93(12), 9724–9729 (2003)

    Article  Google Scholar 

  8. Ghulinyan, M., Gelloz, B., Ohta, T., Pavesi, L., Lockwood, D., Koshida, N.: Stabilized porous silicon optical superlattices with controlled surface passivation. Appl. Phys. Lett 93(6), 061113 (2008)

    Google Scholar 

  9. Estrada-Wiese, D., del Río, J.A.: Refractive index evaluation of porous silicon using Bragg reflectors. Rev. Mex. Física 64(1), 72–81 (2018)

    Article  Google Scholar 

  10. Martín-Palma, R., Ryan, J.V., Pantano, C.: Spectral behavior of the optical constants in the visible∕ near infrared of GeSbSe chalcogenide thin films grown at glancing angle. J. Vac. Sci. Technol. A: Vac. Surf. Films 25(3), 587–591 (2007)

    Article  Google Scholar 

  11. Khardani, M., Bouaïcha, M., Bessaïs, B.: Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment. Phys. Status Solidi C 4(6), 1986–1990 (2007)

    Google Scholar 

  12. Lugo, J., Lopez, H., Chan, S., Fauchet, P.: Porous silicon multilayer structures: a photonic band gap analysis. J. Appl. Phys. 91(8), 4966–4972 (2002)

    Article  Google Scholar 

  13. Jimenéz-Vivanco, M.R., García, G., Carrillo, J., Morales-Morales, F., Coyopol, A., Gracia, M., et al.: Porous Si-SiO2 UV microcavities to modulate the responsivity of a broadband photodetector. Nanomaterials 10(2), 222 (2020)

    Article  Google Scholar 

  14. Rakhimov, R., Osipov, E., Dovzhenko, D., Martynov, I., Chistyakov, A.: Influence of electro-chemical etching parameters on the reflectance spectra of porous silicon rugate filters. J. Phys.: Conf. Ser. (IOP Publishing) 012026 (2016)

    Google Scholar 

  15. Chhasatia, R., Sweetman, M.J., Prieto-Simon, B., Voelcker, N.H.: Performance optimisation of porous silicon rugate filter biosensor for the detection of insulin. Sens. Actuators B: Chem. 273, 1313–1322 (2018)

    Article  Google Scholar 

  16. Jiménez Vivanco, M.D.R., García, G., Doti, R., Faubert, J., Lugo Arce, J.E.: Time-resolved spectroscopy of ethanol evaporation on free-standing porous silicon photonic microcavities. Materials 11(6), 894 (2018)

    Google Scholar 

  17. Rosli, N., Halim, M.M., Chahrour, K.M., Hashim, M.R.: Incorporation of zinc oxide on macroporous silicon enhanced the sensitivity of macroporous silicon MSM photodetector. ECS J. Solid State Sci. Technol. 9(10), 105005 (2020)

    Google Scholar 

  18. Ramadan, R., Manso-Silván, M., Martín-Palma, R.J.: Hybrid porous silicon/silver nanostructures for the development of enhanced photovoltaic devices. J. Mater. Sci. 55(13), 5458–5470 (2020)

    Article  Google Scholar 

  19. Tregulov, V., Litvinov, V., Ermachikhin, A., Maslov, A.: Influence of deep level defects on photoelectrical processes in pn junction solar cells with porous silicon antireflection coating. In: 2020 ELEKTRO, pp. 1–3. IEEE (2020)

    Google Scholar 

  20. Morales, F., García, G., Luna, A., López, R., Rosendo, E., Diaz, T., et al.: UV distributed Bragg reflectors build from porous silicon multilayers. J. Eur. Opt. Soc.-Rapid Publ. 10 (2015)

    Google Scholar 

  21. Gelloz, B., Koshida, N.: Stabilization and operation of porous silicon photonic structures from near-ultraviolet to near-infrared using high-pressure water vapor annealing. Thin Solid Films 518(12), 3276–3279 (2010)

    Article  Google Scholar 

  22. El-Gamal, A., Ibrahim, S.M., Amin, M.: Impact of thermal oxidation on the structural and optical properties of porous silicon microcavity. Nanomater. Nanotechnol. 7 (2017). https://doi.org/10.1177/1847980417735702

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix

MATLAB Program Code

This code is used to obtain the transmission and reflection spectra of microcavities in the Vis and UV range.

figure a
figure b

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiménez-Vivanco, M.R. et al. (2022). Tuning Wavelength of the Localized Mode Microcavity by Applying Different Oxygen Flows. In: Kaiser, M.S., Ray, K., Bandyopadhyay, A., Jacob, K., Long, K.S. (eds) Proceedings of the Third International Conference on Trends in Computational and Cognitive Engineering. Lecture Notes in Networks and Systems, vol 348. Springer, Singapore. https://doi.org/10.1007/978-981-16-7597-3_37

Download citation

Publish with us

Policies and ethics