Skip to main content

Parameter Inverse Identification for Direct Laser Deposition Simulation Using Support Vector Regression and Genetic Algorithm

  • Conference paper
  • First Online:
Advances in Mechanical Design (ICMD 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 111))

Included in the following conference series:

Abstract

An accurate thermal simulation of direct laser deposition (DLD) provides a basis for optimizing DLD process parameters. However, the input thermal parameters that significantly affect the simulation performance are difficult to be measured directly through experimental methods. This paper proposes an inverse method to identify the heat source parameters for DLD thermal simulations using support vector regression and genetic algorithm. Firstly, forward simulation errors of a single-track deposition under different heat source parameters are obtained. Secondly, a quantitative relationship between the heat source parameters and simulation errors is established using support vector regression (SVR), and the suboptimal heat source parameters are inversely identified by genetic algorithm (GA). Finally, a closed-loop forward-inverse iteration is further developed to improve the accuracy of the identified heat source parameters. The results indicate that the proposed inverse identification method gives a good agreement between the predicted and measured temperatures during DLD, and is an efficient method to accurately extract unknown input parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Debroy, T., Wei, H.L., Zuback, J.S.: Additive manufacturing of metallic components—process, structure and properties. Prog. Mater Sci. 92(1), 112–224 (2018)

    Article  Google Scholar 

  2. Graf, B., Ammer, S., Gumenyuk, A., et al.: Design of experiments for laser metal deposition in maintenance, repair and overhaul applications. Procedia CIRP 11(1), 245–248 (2013)

    Article  Google Scholar 

  3. Niz’ev, V.G., Khomenko, M.D., Mirzade, F.K.: Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts. Quantum Electron. 48(8), 743–748 (2018)

    Google Scholar 

  4. Li, C., Liu, C., Li, S.: Numerical simulation of thermal evolution and solidification behavior of laser cladding AlSiTiNi Composite Coatings. Coatings 9(6), 391–409 (2019)

    Article  Google Scholar 

  5. Fabrizia, C., Vittorio, A.: Simulation of laser-assisted directed energy deposition of aluminum powder: prediction of geometry and temperature evolution. Materials 12(13), 2100–2121 (2019)

    Article  Google Scholar 

  6. Felipe, V., Jorge, A.R.-G., Magdalena, W.: Multiphysics simulation of laser-material interaction during laser powder disposition. Int. J. Adv. Manuf. Technol. 59(1), 1037–1045 (2012)

    Google Scholar 

  7. Bai, X.W., Zhang, H.O., Wang, G.L.: Improving prediction accuracy of thermal analysis for weld-based additive manufacturing by calibrating input parameters using IR imaging. Int. J. Adv. Manuf. Technol. 69(1), 1087–1095 (2013)

    Article  Google Scholar 

  8. Iñigo, H., Alfredo, R.M., Magdalena, C.: Inconel 718 laser welding simulation tool based on a moving heat source and phase change. Procedia CIRP 74(1), 674–678 (2018)

    Google Scholar 

  9. Min, R.Y., Gaoyang, M., Jun, X.J.: Laser penetration welding of ship steel EH36: A new heat source and application to predict residual stress considering martensite phase transformation. Mar. Struct. 61(1), 256–267 (2018)

    Google Scholar 

  10. Li, P., Lu, H.: Hybrid heat source model designing and parameter prediction on tandem submerged arc welding. Int. J. Adv. Manuf. Technol. 62(5–8), 577–585 (2011)

    Google Scholar 

  11. Sun, J.M., Jakob, K., Thomas, N.: Effects of heat source geometric parameters and arc efficiency on welding temperature field, residual stress, and distortion in thin-plate full-penetration welds. Int. J. Adv. Manuf. Technol. 99(1–4), 497–515 (2018)

    Article  Google Scholar 

  12. Song, K.J., Zhong, Z.H., Fang, K.: Analytic temperature field solution of dual laser welding heat sources and application in static recrystallization. Int. J. Adv. Manuf. Technol. 92(5–8), 1629–1641 (2017)

    Article  Google Scholar 

  13. Imani, S.S., Zhang, Z.D., Ali, K.: Heat source model calibration for thermal analysis of laser powder-bed fusion. Int. J. Adv. Manuf. Technol. 106(7–8), 3367–3379 (2020)

    Google Scholar 

  14. Song, Y.L., Yu, C., Dai, D.G., et al.: Parameter optimization of heat source model for laser welding based on BP neural network and genetic algorithm. J. Plasticity Eng. 24(1), 218–222 (2017)

    Google Scholar 

  15. Zuo, P.F., Chen, S.Y., Wei, M.W.: Thermal behavior and grain evolution of 24CrNiMoY alloy steel prepared by pre-laid laser cladding technology. Opt. Laser Technol. 119(1), 105613–105624 (2019)

    Article  Google Scholar 

  16. Ren, K., Chew, Y., Fuh, J.Y.H.: Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes. Mater. Des. 162(1), 80–93 (2019)

    Article  Google Scholar 

  17. Cui, L.J., Zhang, S.H., Guo, S.R.: Temperature field simulation and experimental analysis of laser cladding 45 Steel. In: Proceedings of the 25th IEEE International Conference on Automation and Computing, Lancaster Univ, Lancaster, England, F. IEEE, 345 E 47th St, New York, NY 10017 USA (2019)

    Google Scholar 

  18. Goldak, J., Chakravarti, A., Bibby, M.: A new finite element model for welding heat sources. Metall. Trans. 15(1), 299–305 (1984)

    Article  Google Scholar 

  19. Gu, W., Chen, W.P., Ko, C.-H.: Two smooth support vector machines for epsilon-insensitive regression. Comput. Optim. Appl. 70(1), 171–199 (2018)

    Article  MathSciNet  Google Scholar 

  20. Furui, AL-Absi, M.A., Lee, H.J.: Introduce a specific process of genetic algorithm through an example. In: Proceedings of the 10th International Conference on Information and Communication Technology Convergence Jeju, South Korea, F. IEEE, 345 E 47th St, New York, NY 10017 USA (2019)

    Google Scholar 

  21. Tian, F., Zhou, X.X., Yu, Z.H.: Power system transient stability assessment based on comprehensive SVM classification model and key sample set. Power Syst. Prot. Control 45(22), 1–8 (2017)

    Google Scholar 

  22. Chen, C.R., Lin, Y.J., Ou, H.: Study of heat source calibration and modelling for laser welding process. Int. J. Precis. Eng. Manuf. 19(8), 1239–1244 (2018)

    Article  Google Scholar 

  23. Kong, L.W., Wang, Z.Z., Ye, C., Hou, L.: Research on developing technology of five-axis additive-subtractive hybrid machining center. Aeronaut. Manuf. Technol. 62(6), 53–59 (2019)

    Google Scholar 

Download references

Acknowledgements

This project is supported by Innovation Method Program Funded by Ministry of Science and Technology of China (Grant No. 2020IM010100), National Natural Science Foundation of China (Grant No. 51905461, Grant No. 51975495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y. et al. (2022). Parameter Inverse Identification for Direct Laser Deposition Simulation Using Support Vector Regression and Genetic Algorithm. In: Tan, J. (eds) Advances in Mechanical Design. ICMD 2021. Mechanisms and Machine Science, vol 111. Springer, Singapore. https://doi.org/10.1007/978-981-16-7381-8_100

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7381-8_100

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7380-1

  • Online ISBN: 978-981-16-7381-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics