Skip to main content

Electrochemical Water Splitting: H2 Evolution Reaction

  • Chapter
  • First Online:
Photoelectrochemical Hydrogen Generation

Abstract

Development of the clean and green energy sources is the most intensive research in the present energy crisis scenario. In this approach, hydrogen (H2) can be a promising source of clean energy due to its high energy density in molecular form. There are various methods for the H2 production such as water splitting by providing heat energy, partial oxidation, and steam reforming. The main drawback of these methods is that they leave behind carbon emission while H2 production. Electrolysis of water by the electrochemical hydrogen evolution reactions (HER) is more valuable and proficient method to produce H2 because it is of low cost and pollution free. The key point of the electrochemical water splitting to produce hydrogen is that its kinetics is slow. To enhance the H2 production, the HER kinetics need to be faster and for that an efficient electrocatalyst is required which must be earth abundant and cost effective. This book chapter covers the basics of electrochemical water splitting with providing a clear idea of the water-splitting mechanism via HER. Here, a fruitful discussion about the selection of electrocatalysts for electrochemical water splitting has been included with theoretical, computational, and experimental perspective. A detailed discussion has been carried out for the performances of various electrocatalysts for an effective water splitting in this book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joo J, Kim T, Lee J, Choi S-II, Lee K (2019) Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv Mater 31:1–23

    Google Scholar 

  2. Wang K, Sun K, Yu T, Liu X, Wang G, Jiang L, Xie G (2019) Facile synthesis of nanoporous Ni–Fe–P bifunctional catalysts with high performance for overall water splitting. J Mater Chem A 7:2518–2523

    Article  Google Scholar 

  3. Wei G, Wang Y, Huang C, Gao Q, Wang Z, Xu L (2010) The stability of MEA in SPE water electrolysis for hydrogen production. Int J Hydrogen Energy 35:3951–3957

    Article  Google Scholar 

  4. Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326

    Article  Google Scholar 

  5. Song C, Liu Q, Ji N, Kansha Y, Tsutsumi A (2015) Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration. Appl Energy 154:392–401

    Article  Google Scholar 

  6. Yamashita K, Barreto L (2005) Energyplexes for the 21st century: Coal gasification for co-producing hydrogen, electricity and liquid fuels. Energy 30:2453–2473

    Article  Google Scholar 

  7. Yuvaraj AL, Santhanaraj D (2014) A systematic study on electrolytic production of hydrogen gas by using graphite as electrode. Mater Res 17:83–87

    Article  Google Scholar 

  8. Onuki K, Kubo S, Terada A, Sakaba N, Hino R (2009) Thermochemical water-splitting cycle using iodine and sulfur. Energy Environ Sci 2:491–497

    Article  Google Scholar 

  9. Schulte I, Hart D, Van Der VR (2004) Issues affecting the acceptance of hydrogen fuel. Int J Hydrogen Energy 29:677–685

    Article  Google Scholar 

  10. Turner JA (1999) A realizable renewable energy future. Science 285:687–689

    Google Scholar 

  11. Laursen AB, Varela AS, Dionigi F, Fanchiu H, Miller C, Trinhammer OL, Rossmeisl J, Dahl S (2012) Electrochemical hydrogen evolution: sabatier’s principle and the volcano plot. J Chem Educ 89:1595–1599

    Article  Google Scholar 

  12. Morales-Guio CG, Stern LA, Hu X (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43:6555–6569

    Article  Google Scholar 

  13. Kronberg R, Lappalainen H, Laasonen K (2020) Revisiting the Volmer-Heyrovský mechanism of hydrogen evolution on a nitrogen doped carbon nanotube: constrained molecular dynamics versus the nudged elastic band method. Phys Chem Chem Phys 22:10536–10549

    Article  Google Scholar 

  14. Santos E, Hindelang P, Quaino P, Schmickler W (2011) A model for the Heyrovsky reaction as the second step in hydrogen evolution. Phys Chem Chem Phys 13:6992–7000

    Article  Google Scholar 

  15. Zhu J, Hu L, Zhao P, Lee LYS, Wong KY (2020) Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev 120:851–918

    Article  Google Scholar 

  16. Kucernak AR, Zalitis C (2016) General models for the electrochemical hydrogen oxidation and hydrogen evolution reactions : theoretical derivation and experimental results under near mass-transport free conditions. J Phys Chem C 120:10721–10745

    Article  Google Scholar 

  17. Santos E, Quaino P, Schmickler W (2012) Theory of electrocatalysis: Hydrogen evolution and more. Phys Chem Chem Phys 14:11224–11233

    Article  Google Scholar 

  18. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152:J23

    Article  Google Scholar 

  19. Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45:1529–1541

    Article  Google Scholar 

  20. Niu, Siqi Li S. et al. (2020) How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett 5:1083–1087

    Google Scholar 

  21. Smith RDL, Prévot MS, Fagan RD, Trudel S, Berlinguette CP (2013) Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J Am Chem Soc 135:11580–11586

    Article  Google Scholar 

  22. Costentin C, Drouet S, Robert M, Save J (2012) Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. cyclic voltammetry and preparative-scale electrolysis. J Am Chem Soc 134:11235–11242

    Article  Google Scholar 

  23. Kozuch S, Martin JML (2012) “Turning over” definitions in catalytic cycles. ACS Catal 2:2787–2794

    Article  Google Scholar 

  24. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180

    Article  Google Scholar 

  25. Lei Y, Pakhira S, Fujisawa K, Wang X, Iyiola OO, Perea López N, Laura Elías A, Pulickal Rajukumar L, Zhou C, Kabius B, Alem N, Endo M, Lv R, Mendoza-Cortes JL, Terrones M (2017) Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (WxMo1-xS2) and graphene with superior catalytic performance for hydrogen evolution. ACS Nano 11:5103–5112

    Article  Google Scholar 

  26. Liang K, Pakhira S, Yang Z, Nijamudheen A, Ju L, Wang M, Sterbinsky GE, Du Y, Feng Z, Mendoza-cortes JL, Yang Y (2018) S-Doped MoP nanoporous layer towards high- efficiency hydrogen evolution in pH-Universal Electrolyte S-Doped MoP nanoporous layer towards high-efficiency hydrogen evolution in pH-universal electrolyte. ACS Catal 9:651–659

    Article  Google Scholar 

  27. Cross RW, Dzade NY (2020) First-principles mechanistic insights into the hydrogen evolution reaction on Ni2P electrocatalyst in alkaline medium. Catalysts 10:307

    Article  Google Scholar 

  28. Eckenhoff WT, Mcnamara WR, Du P, Eisenberg R (2013) Cobalt complexes as artificial hydrogenases for the reductive side of water splitting. Biochim Biophys Acta—Bioenerg 1827:958–973

    Article  Google Scholar 

  29. McPherson IJ, Vincent KA (2014) Electrocatalysis by hydrogenases lessons for building bioinspired devices. J Brazilian Chem Soc 25:427–441

    Google Scholar 

  30. Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z (2019) Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. AdvMater 31:1–34

    Google Scholar 

  31. Jaegermann W, Tributsch H (1988) Interfacial properties of semiconducting transition metal chalcogenides. Prog Surf Sci 29:1–167

    Article  Google Scholar 

  32. Gao M-R, Xu Y-F, Jiang J, Yu S-H (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42:2986–3017

    Article  Google Scholar 

  33. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  Google Scholar 

  34. Becke AD (2013) Communication: calibration of a strong-correlation density functional on transition-metal atoms. J Chem Phys 138:10–13

    Google Scholar 

  35. Pakhira S, Sen K, Sahu C, Das AK (2013) Performance of dispersion-corrected double hybrid density functional theory: a computational study of OCS-hydrocarbon van der Waals complexes. J Chem Phys 138:164319.

    Google Scholar 

  36. Pakhira S, Takayanagi M, Nagaoka M (2015) Diverse rotational flexibility of substituted dicarboxylate ligands in functional porous coordination polymers. J Phys Chem C 119:28789–28799

    Article  Google Scholar 

  37. Pakhira S, Debnath T, Sen K, Das AK (2016) Interactions between metal cations with H2 in the M+- H2 complexes: performance of DFT and DFT-D methods. J Chem Sci 128:621–631

    Article  Google Scholar 

  38. Pakhira S, Lucht KP, Mendoza-Cortes JL (2017) Iron intercalation in covalent-organic frameworks: a promising approach for semiconductors. J Phys Chem C 121:21160–21170

    Article  Google Scholar 

  39. Niu W, Pakhira S, Marcus K, Li Z, Mendoza-Cortes JL, Yang Y (2018) Apically dominant mechanism for improving catalytic activities of N-doped carbon nanotube arrays in rechargeable Zinc-Air battery. Adv Energy Mater 8:1–11

    Article  Google Scholar 

  40. Pakhira S (2019) Rotational dynamics of the organic bridging linkers in metal-organic frameworks and their substituent effects on the rotational energy barrier. RSC Adv 9:38137–38147

    Article  Google Scholar 

  41. Sinha N, Deshpande I, Pakhira S (2019) Substituents effects of organic linkers on rotational energy barriers in metal-organic frameworks. Chem Select 4:8584–8592

    Google Scholar 

  42. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309

    Article  Google Scholar 

  43. Jayabal Subramaniam, Saranya Govindarajan, Wu Jian, Liu Yongqiang GD and MX (2017) Understanding high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials. J Mater Chem A 5:24540–24563

    Google Scholar 

  44. Ji S, Yang Z, Zhang C, Liu Z, Weei W, Yee I (2013) Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution. Electrochim Acta 109:269–275

    Article  Google Scholar 

  45. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277

    Article  Google Scholar 

  46. Balasubramanyam S, Shirazi M, Bloodgood MA, Wu L, Verheijen MA, Vandalon V, Kessels WMM, Hofmann JP, Bol AA (2019) Edge-site nanoengineering of WS2 by low-temperature plasma-enhanced atomic layer deposition for electrocatalytic hydrogen evolution. Chem Mater 31:5104–5115

    Article  Google Scholar 

  47. Chhowalla M, Shin HS, Eda G, Li L, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  48. Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6:3553–3558

    Article  Google Scholar 

  49. Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-pedersen F, Nørskov JK (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater 15:48–53

    Article  Google Scholar 

  50. Yin Y, Han J, Zhang Y, Zhang X, Xu P, Yuan Q, Samad L (2016) Edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J Am Chem Soc 138:7965–7972

    Article  Google Scholar 

  51. Chen Z, Leng K, Zhao X, Malkhandi S, Tang W, Tian B, Dong L, Zheng L, Lin M, Yeo BS, Loh KP (2017) Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat Commun 8:14548

    Article  Google Scholar 

  52. Lukowski MA, Daniel AS, English CR, Meng F, Forticaux A, Hamers RJ, Jin S (2014) Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ Sci 7:2608–2613

    Article  Google Scholar 

  53. Zhou G, Shan Y, Wang L, Hu Y, Guo J, Hu F, Shen J, Gu Y, Cui J, Liu L, Wu X (2019) Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat Commun 10:399

    Article  Google Scholar 

  54. Miao J, Xiao F-X, Bin YH, Khoo SY, Chen J, Fan Z, Hsu Y-Y, Chen HM, Zhang H, Liu B (2015) Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci Adv 1:1500259–1500259

    Article  Google Scholar 

  55. Shi Y, Zhou Y, Yang DR, Xu WX, Wang C, Bin WF, Xu JJ, Xia XH, Chen HY (2017) Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J Am Chem Soc 139:15479–15485

    Article  Google Scholar 

  56. Ping Liu JAR (2005) Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface the importance of ensemble effect. J Am Chem Soc 127:14871–14878

    Google Scholar 

  57. Blanchard PER et al (2008) X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P ( M = Cr−Ni). Chem Mater 20:7081–7088

    Article  Google Scholar 

  58. Wang X, Kolen YV, Bao X, Kovnir K, Liu L (2015) One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew Chemie Int Ed 54:8188–8192

    Article  Google Scholar 

  59. Hu C, Lv C, Liu S, Shi Y, Song J, Zhang Z, Cai J, Watanabe A (2020) Nickel phosphide electrocatalysts for hydrogen evolution reaction. Catalysts 10:2073–4344

    Article  Google Scholar 

  60. Chen Y, Zhang J, Wan L, Hu W, Liu L, Zhong C, Deng Y (2017) Effect of nickel phosphide nanoparticles crystallization on hydrogen evolution reaction catalytic performance. Trans Nonferrous Met Soc China 27:369–376

    Article  Google Scholar 

  61. Hu J, Zheng S, Zhao X, Yao X, Chen Z (2018) A theoretical study on the surface and interfacial properties of Ni3P for the hydrogen evolution reaction. J Mater Chem A 6:7827–7834

    Article  Google Scholar 

  62. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem Int Ed Engl 53:5427–5430

    Article  Google Scholar 

  63. Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C (2014) Cobalt phosphide nanorods as an ef fi cient electrocatalyst for the hydrogen evolution reaction. Nano Energy 9:373–382

    Article  Google Scholar 

  64. Qiu B, Han A, Jiang D, Wang T, Du P (2019) Cobalt phosphide nanowire arrays on conductive substrate as an efficient bifunctional catalyst for overall water splitting. ACS Sustain Chem Eng 7:2360–2369

    Article  Google Scholar 

  65. Zhang C, Yi, Huang, Yu Y, Zhang J, Zhuo S, Zhang B (2017) Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive 200 facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chem Sci 8:2769–2775

    Google Scholar 

  66. Natarajan M, Faujdar H, Mobin SM, Stein M, Kaur-Ghumaan S (2017) A mononuclear iron carbonyl complex [Fe(μ-bdt)(CO)2(PTA)2] with bulky phosphine ligands a model for the [FeFe] hydrogenase enzyme active site with an inverted redox potential. Dalt Trans 46:10050–10056

    Article  Google Scholar 

  67. Schipper DE, Zhao Z, Thirumalai H, Leitner AP, Donaldson SL, Kumar A, Qin F, Wang Z, Grabow LC, Bao J, Whitmire KH (2018) Effects of catalyst phase on the hydrogen evolution reaction of water splitting: preparation of phase-pure films of FeP, Fe2P, and Fe3P and their relative catalytic activities. Chem Mater 30:3588–3598

    Article  Google Scholar 

  68. Tian J, Liu Q, Cheng N, Asiri AM, Sun X (2014) Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chemie Int Ed 53:9577–9581

    Article  Google Scholar 

  69. Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang J-Y, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution. Energy Environ Sci 7:2624–2629

    Article  Google Scholar 

  70. Pu Z, Liu Q, Asiri AM, Sun X (2014) Tungsten phosphide nanorod arrays directly grown on carbon cloth: a highly e ffi cient and stable hydrogen evolution cathode at all pH values. ACS Appl Mater Interfaces 6:21874–21879

    Article  Google Scholar 

  71. Laursen AB, Patraju KR, Whitaker MJ, Retuerto M, Sarkar T, Yao N, Ramanujachary KV, Greenblatt M, Dismukes GC (2015) Nanocrystalline Ni5P4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ Sci 8:1027–1034

    Article  Google Scholar 

  72. Son CY, Kwak IH, Lim YR, Park J (2016) FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction. Chem Commun 52:2819–2822

    Article  Google Scholar 

  73. Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE (2015) Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater 27:3769–3774

    Article  Google Scholar 

  74. Xing Z, Liu Q, Asiri AM, Sun X (2014) Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater 26:5702–5707

    Article  Google Scholar 

  75. Pi M, Wu T, Zhang D, Chen S, Wang S (2016) Self-supported three-dimensional mesoporous semimetallic WP2 nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution. Nanoscale 8:19779–19786

    Article  Google Scholar 

  76. Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur 388:997–1006

    Google Scholar 

  77. Tsai C, Chan K, Abild-pedersen F, Nørskov JK (2014) Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction a density functional study. Phys Chem Chem Phys 16:13156–13164

    Article  Google Scholar 

  78. Zhou X, Jiang J, Ding T, Zhang J, Pan B, Zuo J, Yang Q (2014) Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2-xnanosheets for high-performance hydrogen evolution. Nanoscale 6:11046–11051

    Article  Google Scholar 

  79. Mazánek V, Mayorga-martinez CC, Boussac D, Sofer Z, Pumera M (2018) WSe2 nanoparticles with enhanced hydrogen evolution reaction prepared by bipolar electrochemistry: application in competitive magneto-immunoassay. Nanoscale 10:23149–23156

    Article  Google Scholar 

  80. Theerthagiri J, Sudha R, Premnath K, Arunachalam P, Madhavan J, Al-mayouf AM (2017) Growth of iron diselenide nanorods on graphene oxide nanosheets as advanced electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 42:13020–13030

    Article  Google Scholar 

  81. Gao D, Xia B, Zhu C, Du Y, Xi P, Xue D, Ding J, Wang J (2018) Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution. J Mater Chem A 6:510–515

    Article  Google Scholar 

  82. Zhang J, Chen Y, Liu M, Du K, Zhou Y, Li Y, Wang Z, Zhang J (2018) 1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: an efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Res 11:4587–4598

    Article  Google Scholar 

  83. Wang X, Chen Y, Zheng B, Qi F, He J, Li Q, Li P, Zhang W (2017) Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J Alloys Compd 691:698–704

    Article  Google Scholar 

  84. Yu J, Li W-J, Zhang H, Zhou F, Li R, Xu C-Y, Zhou L, Zhong H, Wang J (2019) Metallic FePSe3 nanoparticles anchored on N-doped carbon framework for All-pH hydrogen evolution reaction. Nano Energy 57:222–229

    Article  Google Scholar 

  85. RB Levy MB (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science (80- ) 181:547–549

    Google Scholar 

  86. Stottlemyer AL, Kelly TG, Meng Q, Chen JG (2012) Reactions of oxygen-containing molecules on transition metal carbides: surface science insight into potential applications in catalysis and electrocatalysis. Surf Sci Rep 67:201–232

    Article  Google Scholar 

  87. Yang X, Kimmel YC, Fu J, Koel BE, Chen JG (2012) Activation of tungsten carbide catalysts by use of an oxygen plasma pretreatment. ACS Catal 2:765–769

    Article  Google Scholar 

  88. Hunt ST, Nimmanwudipong T, Román-Leshkov Y (2014) Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis. Angew Chemie—Int Ed 53:5131–5136

    Article  Google Scholar 

  89. Zhao Y, Kamiya K, Hashimoto K, Nakanishi S (2013) Hydrogen evolution by tungsten carbonitride nanoelectrocatalysts synthesized by the formation of a tungsten acid/polymer hybrid in situ. Angew Chemie—Int Ed 52:13638–13641

    Article  Google Scholar 

  90. Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions ** angewandte. Angew Chem Int Ed Engl 51:12703–12706

    Article  Google Scholar 

  91. Liao L, Wang S, Xiao J, Bian X, Zhang Y (2014) A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ Sci 7:387–392

    Article  Google Scholar 

  92. Li G, Yu J, Zhou Z, Li R, Xiang Z, Cao Q, Zhao L, Wang X, Peng X, Liu H, Zhou W (2019) N-Doped Mo(2)C Nanobelts/Graphene Nanosheets Bonded with Hydroxy Nanocellulose as Flexible and Editable Electrode for Hydrogen Evolution Reaction. iScience 19:1090–1100.

    Google Scholar 

  93. Gong Q, Wang Y, Hu Q, Zhou J, Feng R, Duchesne PN, Zhang P, Chen F, Han N, Li Y, Jin C, Li Y, Lee S-T (2016) Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nat Commun 7:13216

    Article  Google Scholar 

  94. Xiong W, Guo Q, Guo Z, Li H, Zhao R, Chen Q, Liu Z, Wang X (2018) Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution. J Mater Chem A 6:4297–4304

    Article  Google Scholar 

  95. Lin H, Zhang W, Shi Z, Che M, Yu X, Tang Y, Gao Q (2017) Electrospinning hetero-nanofibers of Fe3C-Mo2C/nitrogen-doped-carbon as efficient electrocatalysts for hydrogen evolution. Chemsuschem 10:2597–2604

    Article  Google Scholar 

  96. Jia J, Zhou W, Wei Z, Xiong T, Li G, Zhao L, Zhang X, Liu H, Zhou J, Chen S (2017) Molybdenum carbide on hierarchical porous carbon synthesized from Cu-MoO2 as efficient electrocatalysts for electrochemical hydrogen generation. Nano Energy 41:749–757

    Article  Google Scholar 

  97. Peng X, Hu L, Wang L, Zhang X, Fu J, Huo K, Lee LYS, Wong K-Y, Chu PK (2016) Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 26:603–609

    Article  Google Scholar 

  98. Ham DJ, Lee JS (2009) Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2:873–899

    Article  Google Scholar 

  99. Liu P, Rodriguez J (2003) Catalytic properties of molybdenum carbide, nitride and phosphide: a theoretical study. Catal Letters 91:247–252

    Article  Google Scholar 

  100. Chen W, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-nobel metal nickel—molybdenum nitride nanosheets. Angew Chem Int Ed Engl 51:6131–6135

    Article  Google Scholar 

  101. Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y (2014) Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci 5:4615–4620

    Article  Google Scholar 

  102. Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG (2013) Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc 135:19186–19192

    Article  Google Scholar 

  103. Zhu Y, Chen G, Xu X, Yang G, Liu M, Shao Z (2017) Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons. ACS Catal 7:3540–3547

    Article  Google Scholar 

  104. Shi J, Pu Z, Liu Q, Asiri AM, Hu J, Sun X (2015) Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochim Acta 154:345–351

    Article  Google Scholar 

  105. Gao D, Zhang J, Wang T, Xiao W, Tao K, Xue D, Ding J (2016) Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J Mater Chem A 4:17363–17369

    Article  Google Scholar 

  106. Zhang Y, Xie Y, Zhou Y, Wang X, Pan K (2017) Well dispersed Fe2N nanoparticles on surface of nitrogen-doped reduced graphite oxide for highly efficient electrochemical hydrogen evolution. J Mater Res 32:1770–1776

    Article  Google Scholar 

  107. Ma Y, He Z, Wu Z, Zhang B, Zhang Y, Ding S, Xiao C (2017) Galvanic-replacement mediated synthesis of copper–nickel nitrides as electrocatalyst for hydrogen evolution reaction. J Mater Chem A 5:24850–24858

    Article  Google Scholar 

  108. Fan M, Zheng Y, Li A, Li K, Liu H, Qiao Z-A (2018) Janus CoN/Co cocatalyst in porous N-doped carbon: toward enhanced catalytic activity for hydrogen evolution. Catal Sci Technol 8:3695–3703

    Article  Google Scholar 

  109. Shi J, Pu Z, Liu Q, Asiri AM, Hu J, Sun X (2015) Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochim Acta 154:345–351

    Google Scholar 

  110. Haque F, Zavabeti A, Zhang BY, Datta RS, Yin Y, Yi Z, Wang Y, Mahmood N, Pillai N, Syed N, Khan H, Jannat A, Wang N, Medhekar N, Kalantar-Zadeh K, Ou JZ (2019) Ordered intracrystalline pores in planar molybdenum oxide for enhanced alkaline hydrogen evolution. J Mater Chem A 7:257–268

    Article  Google Scholar 

  111. Lüdtke T, Wiedemann D, Efthimiopoulos I, Becker N, Seidel S, Janka O, Pöttgen R, Dronskowski R, Koch-Müller M, Lerch M (2017) HP-MoO2: a high-pressure polymorph of molybdenum dioxide. Inorg Chem 56:2321–2327

    Article  Google Scholar 

  112. Xie X, Lin L, Liu RY, Jiang YF, Zhu Q, Xu AW (2015) The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. J Mater Chem A 3:8055–8061

    Article  Google Scholar 

  113. Zheng T, Sang W, He Z, Wei Q, Chen B, Li H, Cao C, Huang R, Yan X, Pan B, Zhou S, Zeng J (2017) Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Lett 17:7968–7973

    Article  Google Scholar 

  114. Jin Y, Wang H, Li J, Yue X, Han Y, Shen PK, Cui Y (2016) Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv Mater 28:3785–3790

    Article  Google Scholar 

  115. Zhao Y, Chang C, Teng F, Zhao Y, Chen G, Shi R, Waterhouse GIN, Huang WZT (2017) Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv Energy Mater 7:1700005

    Article  Google Scholar 

  116. Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X (2017) Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun 8:15437

    Article  Google Scholar 

  117. Chen Y-Y, Zhang Y, Zhang X, Tang T, Luo H, Niu S, Dai Z-H, Wan L-J, Hu J-S (2017) Self-templated fabrication of MoNi4 /MoO3- x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv Mater 29:1703311

    Article  Google Scholar 

  118. Wang H, Lee H, Deng Y, Lu Z, Hsu P, Liu Y, Lin D, Cui Y (2015) Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat Commun 6:7261

    Article  Google Scholar 

  119. Kuang M, Han P, Wang Q, Li J, Zheng G (2016) CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting. Adv Funct Mater 26:8555–8561

    Article  Google Scholar 

  120. Wu R, Zhang J, Shi Y, Liu D, Zhang B (2015) Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J Am Chem Soc 137:6983–6986

    Article  Google Scholar 

  121. Luo Z, Miao R, Huan TD, Mosa IM, Poyraz AS, Zhong W, Cloud JE, Kriz DA, Thanneeru S, He J, Zhang Y, Ramprasad R, Suib SL (2016) Mesoporous MoO3–x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv Energy Mater 6:1600528

    Article  Google Scholar 

  122. Xiao Z, Wang Y, Huang Y-C, Wei Z, Dong C-L, Ma J, Shen S, Li Y, Wang S (2017) Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ Sci 10:2563–2569

    Article  Google Scholar 

  123. Li YH, Liu PF, Pan LF, Wang HF, Yang ZZ, Zheng LR, Hu P, Zhao HJ, Gu L, Yang HG (2015) Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat Commun 6:8064

    Article  Google Scholar 

  124. Zheng Y, Jiao Y, Li LH, Xing T, Chen Y, Jaroniec M, Qiao SZ (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8:5290–5296

    Article  Google Scholar 

  125. Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Du A, Jaroniec M, Qiao SZ (2014) Hydrogen evolution by a metal-free electrocatalyst. Nat Commun 5:1–8

    Article  Google Scholar 

  126. Ito Y, Cong W, Fujita T, Tang Z, Chen M (2015) High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew Chemie Int Ed 54:2131–2136

    Article  Google Scholar 

  127. Wang H, Li X-B, Gao L, Wu H-L, Yang J, Cai L, Ma T-B, Tung C-H, Wu L-Z, Yu G (2018) Three-dimensional graphene networks with abundant sharp edge sites for efficient electrocatalytic hydrogen evolution. Angew Chemie Int Ed 57:192–197

    Article  Google Scholar 

  128. Zhao W, Hu B Xiong B, et al (2020) Temperature differentiated synthesis of hierarchically structured N,S-Doped carbon nanotubes/graphene hybrids as efficient electrocatalyst for hydrogen evolution reaction. J Alloys Compd 848:156528

    Google Scholar 

  129. Qu K, Zheng Y, Jiao Y, Zhang X, Dai S, Qiao S-Z (2017) Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv Energy Mater 7:1602068

    Google Scholar 

  130. Zhao Y, Zhao F, Wang X, Xu C, Zhang Z, Shi G, Qu L (2014) Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew Chemie Int Ed 53:13934–13939

    Article  Google Scholar 

  131. Zhang J, Qu L, Shi G, Liu J, Chen J, Dai L (2016) N, P-Codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew Chemie Int Ed 55:2230–2234

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Science and Engineering Research Board, Department of Science and Technology (SERB-DST), Govt. of India for providing research funds and computing facility under the project number ECR/2018/000255. Dr. Srimanta Pakhira acknowledges support from the SERB-DST, Govt. of India for providing his highly prestigious Ramanujan Faculty Fellowship under the scheme number SB/S2/RJN-067/2017. Mr. Upadhyay was supported by the Indian Institute of Technology Indore (IITI) and Ministry of Human Resources and Development (MHRD) Govt. of India. The authors would like to thank Ms. Stephanie Marxsen, Florida State University, Florida, USA for her helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srimanta Pakhira .

Editor information

Editors and Affiliations

Additional information

Conflicts of Interest:

The authors further have no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, S.N., Pakhira, S. (2022). Electrochemical Water Splitting: H2 Evolution Reaction. In: Kumar, P., Devi, P. (eds) Photoelectrochemical Hydrogen Generation. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-7285-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7285-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7284-2

  • Online ISBN: 978-981-16-7285-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics