Skip to main content

Impact of Food Processing on Anthocyanins

  • Chapter
  • First Online:
Anthocyanins

Abstract

Anthocyanins are thought to be beneficial in human diets and have the potential to reduce the risk of disease. Anthocyanins are easily oxidized and unstable during several processing conditions, including oxygen, light, pH, etc. They are sensitive to heat and to the physicochemical environment; thus, the steps of processing (heating, mechanical and domestic processes) may lead to a degradation of the anthocyanins and an alteration of their antioxidant properties. Stability and color of anthocyanin change due to the different processes. The alteration in consumer preferences and the need to bring safe and high-quality foods are responsible for the evolution of the established food processes or the development of the new ones. In order to understand the effect of food processing on overall quality of anthocyanins, an overview of the most recent thermal (blanching, pasteurization and sterilization, thermal drying, microwave and ohmic heating) and non-thermal food processing/preservation methods (ultrasound, pulsed electric fields, irradiation, ultraviolet irradiation, non-thermal plasma, dense phase carbon dioxide, and membrane processing) was provided in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carel JA, Garcia-Perez JV, Benedito J, Mulet A. Food process innovation through new technologies: use of ultrasound. J Food Eng. 2012;110(2):200–7.

    Article  Google Scholar 

  2. Barba FJ, Putnik P, Bursać Kovačević D, Poojary MM, Roohinejad S, Lorenzo JM, Koubaa M. Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: from preservation of beverages to valorization of by-products. Trends Food Sci Technol. 2017;67:260–70.

    Article  CAS  Google Scholar 

  3. Bhattacharjee C, Saxena VK, Dutta S. Novel thermal and non-thermal processing of watermelon juice. Trends Food Sci Technol. 2019;93:234–43.

    Article  CAS  Google Scholar 

  4. Cavalcanti RN, Santos DT, Meireles MAA. Non-thermal stabilization mechanisms of anthocyanins in model and food systems—an overview. Food Res Int. 2011;44(2):499–509.

    Article  CAS  Google Scholar 

  5. Chen Y, Yu LJ, Rupasinghe HPV. Effect of thermal and non-thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice: a mini-review. J Sci Food Agric. 2013;93(5):981–6.

    Article  CAS  PubMed  Google Scholar 

  6. Dourado C, Pinto C, Barba FJ, Lorenzo JM, Delgadillo I, Saraiva JA. Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends Food Sci Technol. 2019;88:274–89.

    Article  CAS  Google Scholar 

  7. Falguera V, Pagán J, Garza S, Garvín A, Ibarz A. Ultraviolet processing of liquid food: a review: part 2: effects on microorganisms and on food components and properties. Food Res Int. 2011;44(6):1580–8.

    Article  CAS  Google Scholar 

  8. Fu X, Belwal T, Cravotto G, Luo Z. Sono-physical and sono-chemical effects of ultrasound: primary applications in extraction and freezing operations and influence on food components. Ultrason Sonochem. 2020;60:104726.

    Article  CAS  PubMed  Google Scholar 

  9. Huang H-W, Hsu C-P, Wang C-Y. Healthy expectations of high hydrostatic pressure treatment in food processing industry. J Food Drug Anal. 2020;28(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  10. Huang H-W, Hsu C-P, Yang BB, Wang C-Y. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci Technol. 2013;33(1):54–62.

    Article  CAS  Google Scholar 

  11. Huang K, Tian H, Gai L, Wang J. A review of kinetic models for inactivating microorganisms and enzymes by pulsed electric field processing. J Food Eng. 2012;111(2):191–207.

    Article  CAS  Google Scholar 

  12. Jaeger H, Roth A, Toepfl S, Holzhauser T, Engel K-H, Knorr D, Vogel RF, Bandick N, Kulling S, Heinz V, Steinberg P. Opinion on the use of ohmic heating for the treatment of foods. Trends Food Sci Technol. 2016;55:84–97.

    Article  CAS  Google Scholar 

  13. Knorr D. Impact of non-thermal processing on plant metabolites. J Food Eng. 2003;56(2–3):131–4.

    Article  Google Scholar 

  14. Li F, Chen G, Zhang B, Fu X. Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents. Food Res Int. 2017;100:19–30.

    Article  CAS  PubMed  Google Scholar 

  15. Qiu L, Zhang M, Tang J, Adhikari B, Cao P. Innovative technologies for producing and preserving intermediate moisture foods: a review. Food Res Int. 2019;116:90–102.

    Article  CAS  PubMed  Google Scholar 

  16. Rawson A, Patras A, Tiwari BK, Noci F, Koutchma T, Brunton N. Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Res Int. 2011;44(7):1875–87.

    Article  CAS  Google Scholar 

  17. Rifna EJ, Singh SK, Chakraborty S, Dwivedi M. Effect of thermal and non-thermal techniques for microbial safety in food powder: recent advances. Food Res Int. 2019;126:108654.

    Article  CAS  PubMed  Google Scholar 

  18. Shinwari KJ, Rao PS. Stability of bioactive compounds in fruit jam and jelly during processing and storage: a review. Trends Food Sci Technol. 2018;75:181–93.

    Article  CAS  Google Scholar 

  19. Vinatoru M, Mason TJ, Calinescu I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. Trac Trends Anal Chem. 2017;97:159–78.

    Article  CAS  Google Scholar 

  20. Ioannou I, Hafsa I, Hamdi S, Charbonnel C, Ghoul M. Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. J Food Eng. 2012;111(2):208–17.

    Article  CAS  Google Scholar 

  21. Martínez S, Armesto J, Gómez-Limia L, Carballo J. Impact of processing and storage on the nutritional and sensory properties and bioactive components of Brassica spp. A review. Food Chem. 2020;313:126065.

    Article  PubMed  Google Scholar 

  22. Pataro G, Carullo D, Bakar Siddique MA, Falcone M, Donsì F, Ferrari G. Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling. J Food Eng. 2018;233:65–73.

    Article  CAS  Google Scholar 

  23. Xiao H-W, Pan Z, Deng L-Z, El-Mashad HM, Yang X-H, Mujumdar AS, Gao Z-J, Zhang Q. Recent developments and trends in thermal blanching – a comprehensive review. Inf Process Agric. 2017;4(2):101–27.

    Google Scholar 

  24. Castañeda-Ovando A, Pacheco-Hernández MDL, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: A review. Food Chem. 2009;113(4):859–71.

    Article  Google Scholar 

  25. Patras A, Brunton NP, O’Donnell C, Tiwari BK. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol. 2010;21(1):3–11.

    Article  CAS  Google Scholar 

  26. Fischer UA, Carle R, Kammerer DR. Thermal stability of anthocyanins and colourless phenolics in pomegranate (Punica granatum L.) juices and model solutions. Food Chem. 2013;138(2–3):1800–9.

    Article  CAS  PubMed  Google Scholar 

  27. Backes E, Pereira C, Barros L, Prieto MA, Genena AK, Barreiro MF, Ferreira ICFR. Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Res Int. 2018;113:197–209.

    Article  CAS  PubMed  Google Scholar 

  28. He B, Zhang L-L, Yue X-Y, Liang J, Jiang J, Gao X-L, Yue P-X. Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 2016;204:70–6.

    Article  CAS  PubMed  Google Scholar 

  29. Vilkhu K, Mawson R, Simons L, Bates D. Applications and opportunities for ultrasound assisted extraction in the food industry - a review. Innovative Food Sci Emerg Technol. 2008;9(2):161–9.

    Article  CAS  Google Scholar 

  30. You Y, Li N, Han X, Guo J, Zhao Y, Liu G, Huang W, Zhan J. Influence of different sterilization treatments on the color and anthocyanin contents of mulberry juice during refrigerated storage. Innovative Food Sci Emerg Technol. 2018;48:1–10.

    Article  Google Scholar 

  31. Yao G-L, Ma X-H, Cao X-Y, Chen J. Effects of power ultrasound on stability of cyanidin-3-glucoside obtained from blueberry. Molecules. 2016;21(11).

    Google Scholar 

  32. Suslick KS, Hammerton DA, Cline RE. The sonochemical hot-spot. J Am Chem Soc. 1986;108(18):5641–2.

    Article  CAS  Google Scholar 

  33. Portenlanger G, Heusinger H. Chemical-reactions induced by ultrasound and gamma-rays in aqueous-solutions of L-ascorbic-acid. Carbohydr Res. 1992;232(2):291–301.

    Article  Google Scholar 

  34. Zhang D-Y, Wan Y, Xu J-Y, Wu G-H, Li L, Yao X-H. Ultrasound extraction of polysaccharides from mulberry leaves and their effect on enhancing antioxidant activity. Carbohydr Polym. 2016;137:473–9.

    Article  CAS  PubMed  Google Scholar 

  35. Mehmood A, Ishaq M, Zhao L, Yagoob S, Safdar B, Nadeem M, Munir M, Wang C. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrason Sonochem. 2019;51:12–9.

    Article  CAS  PubMed  Google Scholar 

  36. Mieszczakowska-Frac M, Dyki B, Konopacka D. Effects of ultrasound on polyphenol retention in apples after the application of predrying treatments in liquid medium. Food Bioprocess Technol. 2016;9(3):543–52.

    Article  CAS  Google Scholar 

  37. Alighourchi HR, Barzegar M, Sahari MA, Abbasi S. Effect of sonication on anthocyanins, total phenolic content, and antioxidant capacity of pomegranate juices. Int Food Res J. 2013;20(4):1703–9.

    Google Scholar 

  38. Pala CU, Zorba NND, Ozcan G. Microbial inactivation and physicochemical properties of ultrasound processed pomegranate juice. J Food Prot. 2015;78(3):531–9.

    Article  CAS  PubMed  Google Scholar 

  39. Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Saraiva JA, Raso J, Martin-Belloso O, Witrowa-Rajchert D, Lebovka N, Vorobiev E. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int. 2015;77:773–98.

    Article  Google Scholar 

  40. Tremarin A, Brandao TRS, Silva CLM. Inactivation kinetics of Alicyclobacillus acidoterrestris in apple juice submitted to ultraviolet radiation. Food Control. 2017;73:18–23.

    Article  CAS  Google Scholar 

  41. Jin ZT, Zhang QH. Pulsed electric field inactivation of microorganisms and preservation of quality of cranberry juice. J Food Process Preserv. 1999;23(6):481–97.

    Article  Google Scholar 

  42. Evrendilek GA. Impacts of pulsed electric field and heat treatment on quality and sensory properties and microbial inactivation of pomegranate juice. Food Sci Technol Int. 2017;23(8):668–80.

    Article  CAS  PubMed  Google Scholar 

  43. Gabric D, Barba F, Roohinejad S, Gharibzahedi SMT, Radojcin M, Putnik P, Kovacevic DB. Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: a review. J Food Process Eng. 2018;41(1).

    Google Scholar 

  44. Leong SY, Treadwell M, Liu T, Hochberg M, Sack M, Mueller G, Sigler J, Silcock P, Oey I. Influence of pulsed electric fields processing at high-intensity electric field strength on the relationship between anthocyanins composition and colour intensity of merlot (Vitis vinifera L.) musts during cold maceration. Innov Food Sci Emerg Technol. 2020;59:102243.

    Article  CAS  Google Scholar 

  45. Guo M, Jin TZ, Geveke DJ, Fan X, Sites JE, Wang L. Evaluation of microbial stability, bioactive compounds, physicochemical properties, and consumer acceptance of pomegranate juice processed in a commercial scale pulsed electric field system. Food Bioprocess Technol. 2014;7(7):2112–20.

    Article  CAS  Google Scholar 

  46. Yang N, Huang K, Lyu C, Wang J. Pulsed electric field technology in the manufacturing processes of wine, beer, and rice wine: a review. Food Control. 2016;61:28–38.

    Article  CAS  Google Scholar 

  47. Odriozola-Serrano I, Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O. Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods. Trends Food Sci Technol. 2013;29(2):98–107.

    Article  CAS  Google Scholar 

  48. Zhang Y, Hu XS, Chen F, Wu JH, Liao XJ, Wang ZF. Stability and colour characteristics of PEF-treated cyanidin-3-glucoside during storage. Food Chem. 2008;106(2):669–76.

    Article  CAS  Google Scholar 

  49. Tiwari BK, O’Donnell CP, Cullen PJ. Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends Food Sci Technol. 2009a;20(3):137–45.

    Article  CAS  Google Scholar 

  50. Mahapatra AK, Muthukumarappan K, Julson JL. Applications of ozone, bacteriocins and irradiation in food processing: a review. Crit Rev Food Sci Nutr. 2005;45(6):447–61.

    Article  CAS  PubMed  Google Scholar 

  51. DeRuiter FE, Dwyer J. Consumer acceptance of irradiated foods: dawn of a new era? Food Serv Technol. 2002;2(2):47–58.

    Article  Google Scholar 

  52. Alighourchi H, Barzegar M, Abbasi S. Anthocyanins characterization of 15 Iranian pomegranate (Punica granatum L.) varieties and their variation after cold storage and pasteurization. Eur Food Res Technol. 2008;227(3):881–7.

    Article  CAS  Google Scholar 

  53. Kim D, Song H, Lim S, Yun H, Chung J. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice. Radiat Phys Chem. 2007;76(7):1213–7.

    Article  CAS  Google Scholar 

  54. Keyser M, Mueller IA, Cilliers FP, Nel W, Gouws PA. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Sci Emerg Technol. 2008;9(3):348–54.

    Article  CAS  Google Scholar 

  55. Wood OB, Bruhn CM. Position of the American Dietetic Association: fund irradiation. J Am Diet Assoc. 2000;100(2):246–53.

    Article  CAS  PubMed  Google Scholar 

  56. Ayed N, Yu HL, Lacroix M. Improvement of anthocyanin yield and shelf-life extension of grape pomace by gamma irradiation. Food Res Int. 1999;32(8):539–43.

    Article  CAS  Google Scholar 

  57. Bakowska A, Kucharska AZ, Oszmianski J. The effects of heating, UV irradiation, and storage on stability of the anthocyanin-polyphenol copigment complex. Food Chem. 2003;81(3):349–55.

    Article  CAS  Google Scholar 

  58. Riganakos KA, Karabagias IK, Gertzou I, Stahl M. Comparison of UV-C and thermal treatments for the preservation of carrot juice. Innovative Food Sci Emerg Technol. 2017;42:165–72.

    Article  CAS  Google Scholar 

  59. Guerrero-Beltran JA, Barbosa-Canovas GV. Ultraviolet-C light processing of liquid food products. In: Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, JTC Y, editors. Nonthermal processing technologies for food. New York, NY: Willey Blackwell; 2011. p. 262–70.

    Chapter  Google Scholar 

  60. Pala CU, Toklucu AK. Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. J Food Compos Anal. 2011;24(6):790–5.

    Article  CAS  Google Scholar 

  61. Samal S. Thermal plasma technology: the prospective future in material processing. J Clean Prod. 2017;142:3131–50.

    Article  CAS  Google Scholar 

  62. Schlueter O, Ehlbeck J, Hertel C, Habermeyer M, Roth A, Engel K-H, Holzhauser T, Knorr D, Eisenbrand G. Opinion on the use of plasma processes for treatment of foods. Mol Nutr Food Res. 2013;57(5):920–7.

    Article  CAS  Google Scholar 

  63. Herceg Z, Kovacevic DB, Kljusuric JG, Jambrak AR, Zoric Z, Dragovic-Uzelac V. Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chem. 2016;190:665–72.

    Article  CAS  PubMed  Google Scholar 

  64. Odriozola-Serrano I, Soliva-Fortuny R, Martin-Belloso O. Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT Food Sci Technol. 2009;42(1):93–100.

    Article  CAS  Google Scholar 

  65. Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules. 2013;18(2):2328–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dasan BG, Boyaci IH. Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar. Food Bioprocess Technol. 2018;11(2):334–43.

    Article  CAS  Google Scholar 

  67. Perez AG, Sanz C, Rios JJ, Olias R, Olias JM. Effects of ozone treatment on postharvest strawberry quality. J Agric Food Chem. 1999;47(4):1652–6.

    Article  CAS  PubMed  Google Scholar 

  68. Tiwari BK, O’Donnell CP, Muthukumarappan K, Cullen PJ. Anthocyanin and colour degradation in ozone treated blackberry juice. Innovative Food Sci Emerg Technol. 2009b;10(1):70–5.

    Article  CAS  Google Scholar 

  69. Criegee R. Mechanism of ozonolysis. Angew Chem Int Ed Engl. 1975;14(11):745–52.

    Article  Google Scholar 

  70. Xue J, Chen L, Wang H. Degradation mechanism of Alizarin Red in hybrid gas-liquid phase dielectric barrier discharge plasmas: experimental and theoretical examination. Chem Eng J. 2008;138(1–3):120–7.

    Article  CAS  Google Scholar 

  71. Khadre MA, Yousef AE, Kim JG. Microbiological aspects of ozone applications in food: a review. J Food Sci. 2001;66(9):1242–52.

    Article  CAS  Google Scholar 

  72. Del Pozo-Insfran D, Balaban MO, Talcott ST. Enhancing the retention of phytochemicals and organoleptic attributes in muscadine grape juice through a combined approach between dense phase CO2 processing and copigmentation. J Agric Food Chem. 2006;54(18):6705–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, B., Wang, L., Bai, W., Chen, W., Chen, F., Shu, C. (2021). Impact of Food Processing on Anthocyanins. In: Anthocyanins. Springer, Singapore. https://doi.org/10.1007/978-981-16-7055-8_7

Download citation

Publish with us

Policies and ethics