Skip to main content

The Impact of Microwave on the Storage, Stability, and Bioavailability of Anthocyanins from Different Sources in Food Systems

  • Chapter
  • First Online:
Anthocyanins
  • 629 Accesses

Abstract

This article introduces different food sources of anthocyanins and outlines several methods of microwave treatment according to the characteristics of anthocyanins. The effects of different microwave treatments on the storage characteristics, stability, and bioavailability of anthocyanins are discussed in turn. Among them, the microwave drying technology can reduce the drying time, improve the taste of foods with high anthocyanin content, and better retain the biological activity of anthocyanins. Various microwave pretreatment processes can increase the content of anthocyanins in the original food from various aspects. Microwave-assisted extraction technology needs to consider factors such as temperature and power to select appropriate parameters to extract anthocyanins. Since the stability of anthocyanins will affect its bioavailability, the stability of anthocyanins needs to be improved to improve its bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erdtman H. Comparative biochemistry of the flavonoids: J.B. Harborne. Academic press, New York 1967. 90 sh. Phytochemistry. 1969;8(9):1835–6.

    Article  Google Scholar 

  2. Landi M, Tattini M, Gould KS. Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot. 2015;119:4–17.

    Article  CAS  Google Scholar 

  3. Riaz M, Zia-Ul-Haq M, Saad B. The role of anthocyanins in Health as antioxidant, in bone health and as heart protecting agents. In: Haq MZU, Riaz M, Saad B, editors. Anthocyanins and human Health: biomolecular and therapeutic aspects. Cham: Springer International; 2016. p. 87–107.

    Google Scholar 

  4. Silva S, Costa EM, Calhau C, Morais RM, Pintado ME. Anthocyanin extraction from plant tissues: A review. Crit Rev Food Sci Nutr. 2017;57(14):3072–83.

    Article  CAS  PubMed  Google Scholar 

  5. Cavalcanti RN, Santos DT, Meireles MAA. Non-thermal stabilization mechanisms of anthocyanins in model and food systems—an overview. Food Res Int. 2011;44(2):499–509.

    Article  CAS  Google Scholar 

  6. Barnes JS, Nguyen HP, Shen S, Schug KA. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography–electrospray ionization-ion trap-time of flight-mass spectrometry. J Chromatogr A. 2009;1216(23):4728–35.

    Article  CAS  PubMed  Google Scholar 

  7. Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15(10):7313–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garcia-Salas P, Morales-Soto A, Segura-Carretero A, Fernandez-Gutierrez A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules. 2010;15(12):8813–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol. 2006;17(6):300–12.

    Article  CAS  Google Scholar 

  10. Soysal Y, Ayhan Z, Eştürk O, Arıkan MF. Intermittent microwave–convective drying of red pepper: drying kinetics, physical (colour and texture) and sensory quality. Biosyst Eng. 2009;103(4):455–63.

    Article  Google Scholar 

  11. Xie L, Zheng Z-A, Mujumdar AS, Fang X-M, Wang J, Zhang Q, Ma Q, Xiao H-W, Liu Y-H, Gao Z-J. Pulsed vacuum drying (PVD) of wolfberry: drying kinetics and quality attributes. Drying Technol. 2018;36:1501–14.

    Article  CAS  Google Scholar 

  12. Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction of curcumin by sample–solvent dual heating mechanism using Taguchi L9 orthogonal design. J Pharm Biomed Anal. 2008;46(2):322–7.

    Article  CAS  PubMed  Google Scholar 

  13. Michalska A, Honke J, Łysiak G, Andlauer W. Effect of drying parameters on the formation of early and intermediate stage products of the Maillard reaction in different plum (Prunus domestica L.) cultivars. LWT Food Sci Technol. 2016;65:932–8.

    Article  CAS  Google Scholar 

  14. Vadivambal R, Jayas DS. Changes in quality of microwave-treated agricultural products—a review. Biosyst Eng. 2007;98(1):1–16.

    Article  Google Scholar 

  15. Kelen Á, Ress S, Nagy T, Pallai E, Pintye-Hódi K. Mapping of temperature distribution in pharmaceutical microwave vacuum drying. Powder Technol. 2006;162(2):133–7.

    Article  CAS  Google Scholar 

  16. Yong H, Liu J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag Shelf Life. 2020;26:100550.

    Article  Google Scholar 

  17. Fernandes I, Marques F, de Freitas V, Mateus N. Antioxidant and antiproliferative properties of methylated metabolites of anthocyanins. Food Chem. 2013;141(3):2923–33.

    Article  CAS  PubMed  Google Scholar 

  18. Jackman RL, Smith JL. Anthocyanins and betalains. In: Hendry GAF, Houghton JD, editors. Natural food colorants. Boston, MA: Springer US; 1996. p. 244–309.

    Chapter  Google Scholar 

  19. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.

    Article  CAS  PubMed  Google Scholar 

  20. Abdel-Aal E-SM, Hucl P, Shea Miller S, Patterson CA, Gray D. Microstructure and nutrient composition of hairless canary seed and its potential as a blending flour for food use. Food Chem. 2011;125(2):410–6.

    Article  CAS  Google Scholar 

  21. Abdel-Aal E-SM, Young JC, Rabalski I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J Agric Food Chem. 2006;54(13):4696–704.

    Article  CAS  Google Scholar 

  22. He F, Liang N-N, Mu L, Pan Q-H, Wang J, Reeves MJ, Duan C-Q. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules. 2012a;17(2):1571–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He F, Liang N-N, Mu L, Pan Q-H, Wang J, Reeves MJ, Duan C-Q. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules. 2012b;17(2):1483–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Navas MJ, Maria Jimenez-Moreno A, Martin Bueno J, Saez-Plaza P, Asuero AG. Analysis and antioxidant capacity of anthocyanin pigments. Part IV: extraction of anthocyanins. Crit Rev Anal Chem. 2012;42(4):313–42.

    Article  CAS  Google Scholar 

  25. Chaves-Silva S, Santos AL, Chalfun-Júnior A, Zhao J, Peres LEP, Benedito VA. Understanding the genetic regulation of anthocyanin biosynthesis in plants—tools for breeding purple varieties of fruits and vegetables. Phytochemistry. 2018;153:11–27.

    Article  CAS  PubMed  Google Scholar 

  26. Basu A, Rhone M, Lyons TJ. Berries: emerging impact on cardiovascular health. Nutr Rev. 2010;68(3):168–77.

    Article  PubMed  Google Scholar 

  27. Jing P, Giusti MM. Contribution of berry anthocyanins to their chemopreventive properties. In: Seeram NP, Stoner GD, editors. Berries and cancer prevention. New York, NY: Springer; 2011. p. 3–40.

    Chapter  Google Scholar 

  28. Scotter MJ. Emerging and persistent issues with artificial food colours: natural colour additives as alternatives to synthetic colours in food and drink. Qual Assur Saf Crops Foods. 2011;3(1):28–39.

    Article  CAS  Google Scholar 

  29. Briedis V, Povilaityte V, Kazlauskas S, Venskutonis PR. Polyphenols and anthocyanins in fruits, grapes juices and wines, and evaluation of their antioxidant activity. Medicina (Kaunas). 2003;39(Suppl 2):104–12.

    Google Scholar 

  30. Howard LR, Prior RL, Liyanage R, Lay JO. Processing and storage effect on berry polyphenols: challenges and implications for bioactive properties. J Agric Food Chem. 2012;60(27):6678–93.

    Article  CAS  PubMed  Google Scholar 

  31. Ozcelik M, Püschner PA. 16—Microwave plant requirements and process control for advanced applications. In: Regier M, Knoerzer K, Schubert H, editors. The microwave processing of foods. 2nd ed. Cambridge: Woodhead Publishing; 2017. p. 350–80.

    Chapter  Google Scholar 

  32. Ozcelik M, Heigl A, Kulozik U, Ambros S. Effect of hydrocolloid addition and microwave-assisted freeze drying on the characteristics of foamed raspberry puree. Innov Food Sci Emerg Technol. 2019;56:102183.

    Article  CAS  Google Scholar 

  33. Valadez-Carmona L, Plazola-Jacinto CP, Hernández-Ortega M, Hernández-Navarro MD, Villarreal F, Necoechea-Mondragón H, Ortiz-Moreno A, Ceballos-Reyes G. Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innov Food Sci Emerg Technol. 2017;41:378–86.

    Article  CAS  Google Scholar 

  34. Nowacka M, Wiktor A, Anuszewska A, Dadan M, Rybak K, Witrowa-Rajchert D. The application of unconventional technologies as pulsed electric field, ultrasound and microwave-vacuum drying in the production of dried cranberry snacks. Ultrason Sonochem. 2019;56:1–13.

    Article  CAS  PubMed  Google Scholar 

  35. Song C, Ma X, Li Z, Wu T, Raghavan GV, Chen H. Mass transfer during osmotic dehydration and its effect on anthocyanin retention of microwave vacuum-dried blackberries. J Sci Food Agric. 2020;100(1):102–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hnin KK, Zhang M, Wang B, Devahastin S. Different drying methods effect on quality attributes of restructured rose powder-yam snack chips. Food Biosci. 2019;32:100486.

    Article  CAS  Google Scholar 

  37. Süfer Ö, Palazoğlu TK. Microwave–vacuum drying of pomegranate arils (Punica granatum L. cv. Hicaznar): effect on quality and nutrient content. J Food Process Preserv. 2019;43(9):e14085.

    Article  Google Scholar 

  38. Liu S, Zhang X, You L, Guo Z, Chang X. Changes in anthocyanin profile, color, and antioxidant capacity of hawthorn wine (Crataegus pinnatifida) during storage by pretreatments. LWT Food Sci Technol. 2018;95:179–86.

    Article  CAS  Google Scholar 

  39. Carew AL, Sparrow AM, Curtin CD, Close DC, Dambergs RG. Microwave maceration of pinot noir grape must: sanitation and extraction effects and wine phenolics outcomes. Food Bioproc Tech. 2014;7(4):954–63.

    Article  CAS  Google Scholar 

  40. Sharif I, Adewale P, Dalli SS, Rakshit S. Microwave pretreatment and optimization of osmotic dehydration of wild blueberries using response surface methodology. Food Chem. 2018;269:300–10.

    Article  CAS  PubMed  Google Scholar 

  41. Shams Najafabadi N, Sahari MA, Barzegar M, Hamidi Esfahani Z. Effects of concentration method and storage time on some bioactive compounds and color of jujube (Ziziphus jujuba var vulgaris) concentrate. J Food Sci Technol. 2017;54(9):2947–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maskan M. Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods: colour degradation and kinetics. J Food Eng. 2006;72(3):218–24.

    Article  Google Scholar 

  43. Reque PM, Steffens RS, Jablonski A, Flôres SH, Rios AO, de Jong EV. Cold storage of blueberry (Vaccinium spp.) fruits and juice: anthocyanin stability and antioxidant activity. J Food Compos Anal. 2014;33(1):111–6.

    Article  CAS  Google Scholar 

  44. Perez-Grijalva B, Garcia-Zebadua JC, Ruiz-Perez VM, Tellez-Medina DI, Garcia-Pinilla S, Guzman-Geronimo RI, Mora-Escobedo R. Biofunctionality, colorimetric coefficients and microbiological stability of blackberry (Rubus fruticosus var. Himalaya) juice under microwave/ultrasound processing. Revista Mexicana De Ingenieria Quimica. 2018;17(1):13–28.

    CAS  Google Scholar 

  45. Lapornik B, Prošek M, Golc Wondra A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng. 2005;71(2):214–22.

    Article  Google Scholar 

  46. Liazid A, Palma M, Brigui J, Barroso CG. Investigation on phenolic compounds stability during microwave-assisted extraction. J Chromatogr A. 2007;1140(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  47. Armenta S, Garrigues S, de la Guardia M. Green analytical chemistry. TrAC Trends Anal Chem. 2008;27(6):497–511.

    Article  CAS  Google Scholar 

  48. Liu W, Yang C, Zhou C, Wen Z, Dong X. An improved microwave-assisted extraction of anthocyanins from purple sweet potato in favor of subsequent comprehensive utilization of pomace. Food Bioprod Process. 2019;115:1–9.

    Article  CAS  Google Scholar 

  49. Camel V. Microwave-assisted solvent extraction of environmental samples. TrAC Trends Anal Chem. 2000;19(4):229–48.

    Article  CAS  Google Scholar 

  50. Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, Jia C, Zhang X, Xia W. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol. 2009;70(1):63–70.

    Article  CAS  Google Scholar 

  51. Inoue T, Tsubaki S, Ogawa K, Onishi K, Azuma, J.-i. Isolation of hesperidin from peels of thinned Citrus unshiu fruits by microwave-assisted extraction. Food Chem. 2010;123(2):542–7.

    Article  CAS  Google Scholar 

  52. Yang Z, Zhai W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innov Food Sci Emerg Technol. 2010;11(3):470–6.

    Article  CAS  Google Scholar 

  53. Routray W, Orsat V. Microwave-assisted extraction of flavonoids: a review. Food Bioproc Tech. 2012;5(2):409–24.

    Article  CAS  Google Scholar 

  54. Gao M, Song B-Z, Liu C-Z. Dynamic microwave-assisted extraction of flavonoids from Saussurea medusa maxim cultured cells. Biochem Eng J. 2006;32(2):79–83.

    Article  CAS  Google Scholar 

  55. Xiao W, Han L, Shi B. Microwave-assisted extraction of flavonoids from radix Astragali. Sep Purif Technol. 2008;62(3):614–8.

    Article  CAS  Google Scholar 

  56. Patras A, Brunton NP, O'Donnell C, Tiwari BK. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol. 2010;21(1):3–11.

    Article  CAS  Google Scholar 

  57. Aurelio D-L, Edgardo RG, Navarro-Galindo S. Thermal kinetic degradation of anthocyanins in a roselle (Hibiscus sabdariffa L. cv. ‘Criollo’) infusion. Int J Food Sci Technol. 2008;43(2):322–5.

    Article  CAS  Google Scholar 

  58. Elez Garofulić I, Dragović-Uzelac V, Režek Jambrak A, Jukić M. The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca). J Food Eng. 2013;117(4):437–42.

    Article  Google Scholar 

  59. Liazid A, Guerrero RF, Cantos E, Palma M, Barroso CG. Microwave assisted extraction of anthocyanins from grape skins. Food Chem. 2011;124(3):1238–43.

    Article  CAS  Google Scholar 

  60. Zhang B, Yang R, Liu C-Z. Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb. Sep Purif Technol. 2008;62(2):480–3.

    Article  CAS  Google Scholar 

  61. Panić M, Gunjević V, Cravotto G, Radojčić Redovniković I. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chem. 2019;300:125185.

    Article  PubMed  Google Scholar 

  62. Alvarez-Suarez JM, Cuadrado C, Redondo IB, Giampieri F, González-Paramás AM, Santos-Buelga C. Novel approaches in anthocyanin research—plant fortification and bioavailability issues. Trends Food Sci Technol. 2021.

    Google Scholar 

  63. Jiang X, Guan Q, Feng M, Wang M, Yan N, Wang M, Xu L, Gui Z. Preparation and pH controlled release of Fe3O4/anthocyanin magnetic biocomposites. Polymers. 2019;11(12):2077.

    Article  CAS  PubMed Central  Google Scholar 

  64. Aydin E, Gocmen D. The influences of drying method and metabisulfite pre-treatment on the color, functional properties and phenolic acids contents and bioaccessibility of pumpkin flour. LWT Food Sci Technol. 2015;60(1):385–92.

    Article  CAS  Google Scholar 

  65. Bondaruk J, Markowski M, Błaszczak W. Effect of drying conditions on the quality of vacuum-microwave dried potato cubes. J Food Eng. 2007;81(2):306–12.

    Article  Google Scholar 

  66. Caparino OA, Tang J, Nindo CI, Sablani SS, Powers JR, Fellman JK. Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. J Food Eng. 2012;111(1):135–48.

    Article  Google Scholar 

  67. Saha SK, Dey S, Chakraborty R. Effect of microwave power on drying kinetics, structure, color, and antioxidant activities of corncob. J Food Process Eng. 2019;42(4):e13021.

    Article  Google Scholar 

  68. Tarko T, Duda-Chodak A, Tuszyński T. The influence of microwaves and selected manufacturing parameters on APPLE chip quality and antioxidant activity. J Food Process Preserv. 2009;33(5):676–90.

    Article  CAS  Google Scholar 

  69. İzli N, Yıldız G, Ünal H, Işık E, Uylaşer V. Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). Int J Food Sci Technol. 2014;49(1):9–17.

    Article  Google Scholar 

  70. Zhao G, Zhang R, Liu L, Deng Y, Wei Z, Zhang Y, Ma Y, Zhang M. Different thermal drying methods affect the phenolic profiles, their bioaccessibility and antioxidant activity in Rhodomyrtus tomentosa (Ait.) Hassk berries. LWT Food Sci Technol. 2017;79:260–6.

    Article  CAS  Google Scholar 

  71. Bualuang O, Onwude DI, Pracha K. Microwave drying of germinated corn and its effect on phytochemical properties. J Sci Food Agric. 2017;97(9):2999–3004.

    Article  CAS  PubMed  Google Scholar 

  72. Wang F, Li H, Qin Y, Mao Y, Zhang B, Deng Z. Effects of heat, ultrasound, and microwave processing on the stability and antioxidant activity of delphinidin and petunidin. J Food Biochem. 2019;43(5):e12818.

    Article  PubMed  Google Scholar 

  73. Chemat F, Vian MA, Cravotto G. Green extraction of natural products: concept and principles. Int J Mol Sci. 2012;13(7):8615–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pimentel-Moral S, Teixeira MC, Fernandes AR, Borrás-Linares I, Arráez-Román D, Martínez-Férez A, Segura-Carretero A, Souto EB. Polyphenols-enriched Hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): optimization by multi-response surface methodology. J Drug Deliv Sci Technol. 2019;49:660–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, B., Wang, L., Bai, W., Chen, W., Chen, F., Shu, C. (2021). The Impact of Microwave on the Storage, Stability, and Bioavailability of Anthocyanins from Different Sources in Food Systems. In: Anthocyanins. Springer, Singapore. https://doi.org/10.1007/978-981-16-7055-8_10

Download citation

Publish with us

Policies and ethics