Skip to main content

Water Logging Tolerance and Crop Productivity

  • Chapter
  • First Online:
Augmenting Crop Productivity in Stress Environment

Abstract

Water logging is a frequently occurring event, which is accompanied by heavy rainfall and has a negative impact on crop productivity by reducing productivity by 80%. Higher losses in productivity are seen in sensitive crops than tolerant crops in respect to water logging stress. Plant growth and development (at different growth stages) respond differently to water logging stress. At times, a longer time duration of water logging causes plant death. Nutrient uptake is highly hampered in plants under such stress. Carbon assimilation and transpiration rate are also reduced in plants exposed to water logging. Water logging stress creates hypoxia or anoxia condition for the plant due to which alterations in different traits is seen. Switch in plant biochemical and metabolic traits are commonly observed in plants exposed to water logging. Roots are the first part of the plant, which is exposed to this stress, and rooting adaptations under this condition help in plant survival. Formation of aerial roots, aerenchyma development, and higher production of ethylene are some characteristics of tolerant cultivars against water logging conditions. We focus on plant responses toward water logging condition, how the hypoxia or anoxia condition is induced, the mechanism involved in tolerant plant cultivars, and various strategies that a plant adopt for its survival under this stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamgir HM, Nasir USS (2011) Mechanisms of water logging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Australian J Crop Sci 5:1094–1101

    Google Scholar 

  • Armstrong J, Armstrong W (1991) A convective through-flow of gases in Phragmites australis. Aquat Bot 39:73–86

    Article  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. In: Woolhouse HW (ed) Advances in botanical research. Academic Press, London, pp 225–232

    Google Scholar 

  • Armstrong W, Drew M (2002a) Root growth and metabolism under oxygen deficiency. Plant Root 3:729–761

    Google Scholar 

  • Armstrong W, Drew MC (2002b) Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel rd Dekker, New York, pp 729–761

    Google Scholar 

  • Armstrong W, Strange ME, Cringle S, Beckett PM (1994) Microelectrode and modelling study of oxygen distribution in roots. Ann Bot 74:287–299

    Article  Google Scholar 

  • Atwell BJ, Greenway H, Colmer TD (2015) Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings. New Phytol 206:36–56

    Article  CAS  PubMed  Google Scholar 

  • Avivi S, Arnin SFM, Soeparjono S, Restanto DP, Fanata WID, Widjaya KA (2020) Tolerance screening of sugarcane varieties toward water logging stress. E3S Web Conf 142(03007):1–6

    Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Beals CC (1917) The effect of aeration on the roots of Zea mays. I Proc Indiana Acad Scii 7:177–180

    Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady NC, Weil RR (2008) The nature and properties of soil, 14th edn. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Brandle R, Crawford RMM (1987) Rhizome anoxia tolerance and habitat socialization in wetland plants. In: RMM C (ed) Plant life in aquatic and amphibious habitats. Blackwell, Oxford, pp 397–410

    Google Scholar 

  • Brandle RA (1991) Flooding resistance of rhizomatous amphibious plants. In: Jackson MD, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. Academic Publisher, The Hague, pp 35–46

    Google Scholar 

  • Bryant AE (1934) Comparison of anatomical and histological differences between roots of barley grown in aerated and in non-aerated culture solutions. Plant Physiol 9:389–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colmer TD (2003) Long distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytol 179:964–974

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  CAS  PubMed  Google Scholar 

  • Drew MC (1990) Sensing soil oxygen. Plant Cell Environ 13:681–693

    Article  CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, He CJ, Morgan PW (1989) Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen or phosphate-starvation in adventitious roots of Zea mays L. Plant Physiol 91:266–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drew MC, Jackson MB, Giffard SC, Campbell R (1981) Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 153:217–224

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, Lynch JM (1980) Soil anaerobiosis, microorganisms and root function. Annu Rev Phytopathol 18:37–66

    Article  CAS  Google Scholar 

  • Dunn GA (1921) Note on the histology of grain roots. Amer J Bot 8:207–211

    Article  Google Scholar 

  • Ferreyra R, Selles G, Pinto M, Morales M, Seguel O (2011) Effect of soil air capacity on water relations and vegetative growth of ‘Thompson seedless’ grafted on different rootstocks. Preliminary results. Acta Hortic 889:145–150

    Article  Google Scholar 

  • Food and Agriculture Organization (2015) Food and Agriculture Organization of the United Nations. http://www.fao.org/3/abc600e.pdf

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  PubMed  Google Scholar 

  • Gladish DK, Xu JP, Niki T (2006) Apoptosis-like programmed cell death occurs in procambium and ground meristem of pea (Pisum sativum) root tips exposed to sudden flooding. Ann Bot 97:895–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomathi R, Rao PNG, Chandran K, Selvi A (2015) Adaptive responses of sugarcane to water logging stress: an overview. Sugar Tech 17(4):325–338

    Article  CAS  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kanwano R, Sakakibara H, Wu J, Matsuoka T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt deep water. Nature 460:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Uddin SN (2011) Mechanisms of water logging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Aust J Crop Sci 5(9):1094–1101

    CAS  Google Scholar 

  • Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A (2010) Physiological and biochemical changes in plants under waterlogging. Protoplasma 241:3–17. https://doi.org/10.1007/s00709-009-0098-8

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB (2004) The impact of flooding stress on plants and crops. http://www.plantstress.com/Articles/waterlogging_i/waterlog_i.htm

  • Jackson MB, Drew MC, Giffard SC (1981) Effects of applying ethylene to the root system of Zea mays on growth and nutrient concentration in relation to flooding tolerance. Physiol Plant 52:23–28

    Article  CAS  Google Scholar 

  • Jackson MB, Saker LR, Crisp CM, Else MA, Janowiak F (2003) Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure. Plant and Soil 253:103–113

    Article  CAS  Google Scholar 

  • Jiang Z, Hu Z, Zeng L, Lu W, Zhang H, Li T, Xiao H (2011) The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med 50:907–917

    Article  CAS  PubMed  Google Scholar 

  • Kawase M (1978) How plants adapt to water logging. Ohio Rep Ohio Agric Res Dev Center 63:14–15

    Google Scholar 

  • Kawase M (1979) Role of cellulase in aerenchyma development in sunflower. Amer J Bot 66:183–190

    Article  CAS  Google Scholar 

  • Konings H (1982) Ethylene-promoted formation of aerenchyma in seedling roots of Zea mays L. under aerated and non-aerated conditions. Physiol Plant 54:119–124

    Article  CAS  Google Scholar 

  • Konings H, Jackson MB (1979) A relationship between rates of ethylene production by roots and the promoting or inhibiting effects of exogenous ethylene and water on root elongation. Z Pflanzenphysiol 92:385–397

    Article  CAS  Google Scholar 

  • Kretzschmar T, Pelayo MAF, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Mendioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J, Ismail AM, Mackill DJ, Septiningsih EM (2015) A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1:15124

    Article  CAS  PubMed  Google Scholar 

  • Lambers H (1976) Respiration and NADH oxidation of the root of flood-intolerant Senecio species as affected by anaerobiosis. Plant Physiol 37:117–122

    Article  CAS  Google Scholar 

  • Lee SC, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, Oosumi T, Voesenek LACJ, Bailey-Serres J (2011) Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytol 190:457–471

    Article  CAS  PubMed  Google Scholar 

  • Loreti E, Perata P (2020) The many facets of hypoxia in plants. Plan Theory 9(6):745–759

    CAS  Google Scholar 

  • MacEwan R, Gardner W, Ellington A, Hopkins D, Bakker A (1992) Tile and mole drainage for control of waterlogging in duplex soils of South-Eastern Australia. Aust J Exp Agric 32:865–878

    Article  Google Scholar 

  • Marashi SK, Chinchanikar GS (2010) Effect of waterlogging on yield and yield components of wheat (Triticum aestivum L.). Int J Appl Agric Res 5(4):561–567

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London, 674

    Google Scholar 

  • Mcpherson DC (1939) Cortical air spaces in the roots of Zea mays L. New Phytol 38:190–202

    Article  CAS  Google Scholar 

  • Misra V, Solomon S, Singh P, Prajapati CP, Ansari MI (2016) Effect of water logging on post harvest sugarcane deterioration. Agri 5(2):119–132

    Article  Google Scholar 

  • Misra V, Solomon S, Mall AK, Prajapati CP, Hasheem A, Abdallah EF, Ansari MI (2020) Morphological assessment of water stressed sugarcane: a comparison of waterlogged and drought affected crop. Saudi J Biol Sci 27(5):1228–1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustroph A (2018) Improving flooding tolerance of crop plants. Agronomy 8:160–185

    Article  CAS  Google Scholar 

  • Mustroph A, Hess N, Sasidharan R (2014) Hypoxic energy metabolism and PPi as an alternative energy currency. In: van Dongen JT, Licausi F (eds) Low-oxygen stress in plants. Springer, Vienna, pp 165–184

    Chapter  Google Scholar 

  • Oosterhuis DM, Scott RE, Hampton RE, Wullschleger SD (1990) Physiological responses of two soyabean (Glycine max. (L.) Merr) cultivars to short-term flooding. Environ Exp Bot 30(1):85–92

    Article  Google Scholar 

  • Pedersen O, Rich SM, Colmer TD (2009) Surviving floods. Leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. Plant J 58:147–156

    Article  CAS  PubMed  Google Scholar 

  • Pierret A, Doussan C, Capowiez Y, Bastardie F, Pages L (2007) Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J 6:269–281

    Article  Google Scholar 

  • Ponnamperuma PN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Article  CAS  Google Scholar 

  • Pucciariello C, Boscari A, Tagliani A, Brouquisse R, Perata P (2019) Exploring legume rizobia symbiotic models for water logging tolerance front. Plant Sci 10:578. https://doi.org/10.3389/fpls.2019.00578

    Article  Google Scholar 

  • Rhine MD, Stevens G, Shannon G, Wrather A, Sleper D (2010) Yield and nutritional responses to waterlogging of soybean cultivars. Irrig Sci 28:135–142

    Article  Google Scholar 

  • Robertson F, Suraweera D, McCaskill M, Christy B, Armstrong R, Zollinger R, Byron J, Partington D, Clark S (2019) Waterlogging effects on soils and wheat crops in the high rainfall zone of Victoria. In: Proceedings of the 2019 agronomy Australia conference, 25–29 August 2019, Wagga Wagga, Australia

    Google Scholar 

  • Romina P, Abeledo LG, Miralles DJ (2018) Physiological traits associated with reductions in grain number in wheat and barley under waterlogging. Plant and Soil 429:1–13

    CAS  Google Scholar 

  • Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup KH, Hill RD, Holdsworth MJ, Ismail AM, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih MC, Sorell BK, Striker GG, Dongen JTV, Whelan J, Xiao S, Visser EJW, Voesenek LACJ (2017) Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol 214:1403–1407

    Article  PubMed  Google Scholar 

  • Sasidharan R, Voesenek LACJ (2015) Ethylene-mediated acclimations to flooding stress. Plant Physiol 169:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setter TL (2000) Farming systems for waterlogging prone sand-plain soils of the south coast. Department of Agriculture, Western Australia

    Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for water logging tolerance in wheat, barley and oats. Plant and Soil 253:1–34

    Article  CAS  Google Scholar 

  • Setter TL, Waters I, Sharma SK, Singh KN, Kulshreshtha N, Yaduvanshi NPS, Ram PC, Singh BN, Rane J, McDonald G, Khabaz-Saberi H, Biddulph TB, Wilson R, Barclay I, McLean R, Cakir M (2009) Review of wheat improvement for water logging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Ann Bot 103:221–235

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Shabala L, Barcelo J, Poschenrieder C (2014) Membrane transporter mediating root signaling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ 37:2216–2233

    CAS  PubMed  Google Scholar 

  • Shannon JG, Stevens WE, Wiebold WJ, McGraw RL, Sleper DA (2005) Breeding soybeans for improved tolerance to flooding. In: Proceedings of 35th soybean seed research conference, American Seed Trade Association, Chicago

    Google Scholar 

  • Shimamura S, Yamamoto R, Nakamura T, Shimada S, Komatsu S (2010) Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann Bot 106:277–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiono K, Oga FLS, Yamazaki S, Isoda H, Fujimura T, Nakazono M, Colmer TD (2011) Contrasting dynamics of radial O2- loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann Bot 107:89–99

    Article  CAS  PubMed  Google Scholar 

  • Shiono K, Yamauchi T, Yamazaki S, Mohanty B, Malik AI, Nagamura Y, Nishizawa NK, Tsutsumi N, Colmer TD, Nakazono M (2014) Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). J Exp Bot 65:4795–4806

    Article  CAS  PubMed  Google Scholar 

  • Sojka RE, Scott HD (2000) Aeration measurement. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker, New York, pp 27–29

    Google Scholar 

  • Solaiman Z, Colmer T, Loss S, Thomson B, Siddique K (2007) Growth responses of cool-season grain legumes to transient waterlogging. Aust J Agr Res 58:406–412

    Article  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Thomas AL, Guerreiro SMC, Sodek L (2005) Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann Bot 96:1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban DW, Roberts MJ, Schlenker W, Lobell DB (2015) The effects of extremely wet planting conditions on maize and soybean yields. Climate Change 130:247–260

    Article  CAS  Google Scholar 

  • Van Dongen JT, Licausi F (2015) Oxygen sensing and signaling. Annu Rev Plant Biol 66:345–367

    Article  PubMed  CAS  Google Scholar 

  • Van Veen H, Mustroph A, Barding GA, Vergeer-van EM, Welschen-Evertman RAM, Pedersen O, Visser EJW, Larive CK, Pierik R, Bailey-Serres J, Laurentius ACJ, Voesenek RS (2013) Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell 25:4691–4707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    Article  CAS  Google Scholar 

  • Vashisht D, Hesselink A, Pierik R, Ammerlaan JMH, Bailey-Serres J, Visser EJW, Pedersen O, van Zanten M, Vreugdenhil D, Jamar DCL, Voesenek LACAJ, Sasidharan R (2011) Natural variation of submergence tolerance among Arabidopsis thaliana accessions. New Phytol 190:299–310

    Article  CAS  PubMed  Google Scholar 

  • Voesenek LACJ, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206:57–73

    Article  CAS  PubMed  Google Scholar 

  • Vriezen WH, Zhou Z, Van der Straeten D (2003) Regulation of submergence-induced enhanced shoot elongation in Oryza sativa L. Ann Bot 91:263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler BD, Al-Farraj M, Cook RED (1985) Iron toxicity to plants in base-rich wetlands: comparative effects on the distribution and growth of Epilobium hirsutum L. and Juncus subnodulosus Schrank. New Phytol 100:653–669

    Article  CAS  Google Scholar 

  • Willaims WT, Barber DA (1961) The functional significance of aerenchyma in plants. Soc Exp Biol Symp 15:132–144

    Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismial AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene responsive-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Yaduvanshi N, Setter T, Sharma S, Singh K, Kulshreshtha N (2014) Influence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and Australia. Soil Res 50:489–499

    Article  CAS  Google Scholar 

  • Yamasaki T (1952) Studies on the "excess moisture injury" of upland crops in over-moist soil from the viewpoint of soil chemistry and plant physiology. Bull Nat Inst Agric Sci 1:1–92

    Google Scholar 

  • Yamauchi T, Colmer TD, Pedersen O, Nakazono M (2018) Regulation of root traits for internal aeration and tolerance to soil water logging-flooding stress. Plant Physiol 176:1118–1130

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Hsu FC, Li JP, Wang NN, Shih MC (2011) The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol 156:202–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang X (1994) Can early wilting of old leaves account for much of the ABA accumulation in flooded pea plants? J Exp Bot 45:1335–1342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra, V., Ansari, M.I. (2022). Water Logging Tolerance and Crop Productivity. In: Ansari, S.A., Ansari, M.I., Husen, A. (eds) Augmenting Crop Productivity in Stress Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-6361-1_10

Download citation

Publish with us

Policies and ethics