Skip to main content

Optimal Transport Based Multi-layer Domain Adaptation Model for Industrial Fault Diagnosis

  • Conference paper
  • First Online:
Proceedings of 2021 Chinese Intelligent Systems Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 805))

  • 1818 Accesses

Abstract

Bearing and gearbox are important parts of transmission system, which can directly affect the efficiency of the industrial system. However, due to the varying working load and environmental change, the training and test data can not follow the same distribution, causing that the performance of traditional machine learning methods is significantly reduced. In this paper, A multi-layer optimal transport adaptation network (MLOT) is proposed. Firstly, the stacked autoencoder is trained layer by layer to extract the abstract information hidden in the data. Secondly, a Wasserstein distance is embedded into the autoencoder to reduce the discrepancies between the source and target features, which can improve the generalization of the model in the target domain. Finally, the label predictor (Softmax) trained on source domain can be directly applied in the target domain and reduce the cost of recollecting annotation data. The experimental results show that the proposed algorithm has superior domain adaptation learning ability and fault diagnosis effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mba, D., Rao, R.B.K.N.: Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines: bearings, pumps, gearboxes, engines, and rotating structures. Shock Vib. Digest 38(1), 3–16 (2006). https://doi.org/10.1016/0022-2836(81)90087-5

    Article  Google Scholar 

  2. May, P., Ehrlich, H.-C., Steinke, T.: ZIB structure prediction pipeline: composing a complex biological workflow through web services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006). https://doi.org/10.1007/11823285_121

    Chapter  Google Scholar 

  3. Yan, J., Lee, J.: Degradation assessment and fault modes classification using logistic regression. J. Manufact. Sci. Eng. 127(4), 912–914 (2005)

    Article  Google Scholar 

  4. Widodo, A., Yang, B.-S.: Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Sig. Process. 21(6), 2560–2574 (2007)

    Article  Google Scholar 

  5. Yao, L., Xiao, Y., Gong, X., Hou, J., Chen, X.: A novel intelligent method for fault diagnosis of electric vehicle battery system based on wavelet neural network. J. Power Sources 453, 227870 (2020)

    Article  Google Scholar 

  6. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  7. Alrifaey, M., Lim, W.H., Ang, C.K.: A novel deep learning framework based RNN-SAE for fault detection of electrical gas generator. IEEE Access 9, 21433–21442 (2021)

    Article  Google Scholar 

  8. Peng, D., Wang, H., Liu, Z., Zhang, W., Zuo, M.J., Chen, J.: Multibranch and multiscale CNN for fault diagnosis of wheelset bearings under strong noise and variable load condition. IEEE Trans. Ind. Inform. 16(7), 4949–4960 (2020)

    Article  Google Scholar 

  9. Gai, J., Shen, J., Wang, H., Hu, Y.: A parameter-optimized DBN using GOA and its application in fault diagnosis of gearbox. Shock Vib. 2020(9), 1–11 (2020)

    Google Scholar 

  10. Lu, W., Liang, B., Cheng, Y., Meng, D., Yang, J., Zhang, T.: Deep model based domain adaptation for fault diagnosis. IEEE Trans. Ind. Electron. 64(3), 2296–2305 (2016)

    Article  Google Scholar 

  11. Wen, L., Gao, L., Li, X.: A new deep transfer learning based on sparse auto-encoder for fault diagnosis. IEEE Trans. Syst. Man Cybern. Syst. 49(1), 136–144 (2017)

    Article  Google Scholar 

  12. Smola, A., Gretton, A., Song, L., Schölkopf, B.: A Hilbert space embedding for distributions. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 13–31. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75225-7_5

    Chapter  Google Scholar 

  13. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schoelkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Rachev, S.T., Shortt, R.M.: Duality theorems for Kantorovich-Rubinstein and Wasserstein functionals (1990)

    Google Scholar 

  15. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  Google Scholar 

  16. LeCun, Y., Touresky, D., Hinton, G.: A theoretical framework for back-propagation. In: Proceedings of the 1988 Connectionist Models Summer School, vol. 1, pp. 21–28 (1988)

    Google Scholar 

  17. Loparo, K.A.: Case western reserve university bearing data center (2013). http://csegroups.case.edu/bearingdatacenter/pages/12k-drive-end-bearing-fault-data

  18. Goebel, K.: Gearbox Fault Detection Dataset, PHM Data Challenge 2009 (2009). https://c3.nasa.gov/dashlink/resources/997/

  19. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2010)

    Article  Google Scholar 

  20. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1 (2016)

    Google Scholar 

  21. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  22. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (No. 61972443), National Key Research and Development Plan Program of China (No. 2019YFE0105300), Hunan Provincial Hu-Xiang Young Talents Project of China (No. 2018RS3095), and Hunan Provincial Natural Science Foundation of China (No. 2020JJ5199).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, LB. et al. (2022). Optimal Transport Based Multi-layer Domain Adaptation Model for Industrial Fault Diagnosis. In: Jia, Y., Zhang, W., Fu, Y., Yu, Z., Zheng, S. (eds) Proceedings of 2021 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering, vol 805. Springer, Singapore. https://doi.org/10.1007/978-981-16-6320-8_41

Download citation

Publish with us

Policies and ethics