Skip to main content

Lignocellulosic Waste Management Through Cultivation of Certain Commercially Useful and Medicinal Mushrooms: Recent Scenario

  • Chapter
  • First Online:
Biology, Cultivation and Applications of Mushrooms

Abstract

Huge amounts of lignocellulosic wastes which are annually generated worldwide in various sectors (agricultural, forestry, and food industries) are rich in organic compounds and are worthy of being recovered and transformed. The lignocellulosic wastes constitute a major portion of the total carbon that is fixed by photosynthesis. They are the most abundantly available raw materials on the earth and are chiefly composed of carbohydrate polymers like cellulose, hemicelluloses, and lignin. Only a fraction of the total waste is utilized for useful applications, whereas the bulk is left unused, as it may incur disposal cost or it is burnt, which results in the emission of black carbon that causes environmental problems. Therefore, efforts are being made for the conversion of these lignocellulosic wastes into profitable products by using microbial technology. Mushroom cultivation represents an expanded and economically important biotechnological industry in which lignocellulosic waste residues are converted into protein-rich food through solid-state-fermentation process. It is an ecofriendly activity, which in recent years has gained lot of importance due to the increasing global demand for high quality proteins, vitamins, and minerals. Mushrooms are probably the highest protein producers per unit area and time as they have short life cycles and utilize vertical space.

Therefore, production of lignocellulosic mushrooms need to be popularized so that bulk of the lignocellulosic wastes can be utilized. The most important lignocellulosic mushrooms include Agaricus bisporus (button mushroom), Pleurotus spp. (oyster mushroom), Calocybe indica (milky mushroom), Ganoderma lucidum (reishi mushroom), Auricularia (wood ear mushroom), Lentinula edodes (shiitake), and many more. This review is based on the growth behavior and productive potential of various commercially and medicinally important lignocellulosic mushrooms on various lignocellulosic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BE:

Biological efficiency

EJ:

Exa-joules

GHG:

Green house gases

LW:

Lignocellulosic wastes

Mt:

Metric ton

SB:

Sugarcane bagasse

t:

ton

References

  • Abdulrazzaq AK, Juber KS, Hadwan HA (2017) Evaluation of the efficiency of substrate in yield characteristics and qualities of Flammulina velutipes. Iraqi J Agric Sci 48:1122–1130

    Google Scholar 

  • Acharya K, Tarafder E, Pradhan P, Dutta AK, Paloi S, Datta M, Roy A (2017) Contribution to the macromycetes of West Bengal, India. Res J Pharm Technol 10:3061–3068

    Article  Google Scholar 

  • Agamuthu P (2009) Challenges and opportunities in agrowaste management: an Asian perspective. Inaugural meeting of first regional 3R Forum in Asia 11–12 Nov, Tokyo, Japan

    Google Scholar 

  • Ahlawat OP, Arora B (2016) Paddy straw mushroom (Volvariella volvacea) cultivation. ICAR-Directorate of Mushroom Research, Solan, pp 165–182

    Google Scholar 

  • Ahlawat OP, Kumar S (2005) Traditional and modern cultivation technologies for the paddy straw mushroom (Volvariella spp.). In: Rai RD, Upadhyay RC, Sharma SR (eds) Frontiers in mushroom biotechnology. National Research Centre for Mushroom, Solan, pp 157–164

    Google Scholar 

  • Ahmed Z, Banu H, Rahman MM, Akhtar F, Haque MS (2001) Microbial activity on the degradation of lignocellulosic polysaccharides. Res J Biol Sci 1:993–997

    Google Scholar 

  • Akyuz M, Yildiz A (2008) Evaluation of cellulosic wastes for the cultivation of Pleurotus eryngii (DC. Ex Fr.) Quel. Afr J Biotechnol 7:1494–1499

    Google Scholar 

  • Akyuz M, Onganer AN, Erecevit P, Kirbag S (2010) Antimicrobial activity of some edible mushrooms in the Eastern and Southeast Anatolia Region of Turkey. GU J Sci 23:125–130

    Google Scholar 

  • Altieri R, Esposit OA, Parati F, Lobianco A, Pepi M (2009) Performance of olive mill solid waste as a constituent of the substrate in commercial cultivation of Agaricus bisporus. Int Biodeterior Biodegrad 63:993–997

    Article  CAS  Google Scholar 

  • Andlar M, Rezi T, MarÄ‘etko N, Kracher D, Ludwig R, Santek B (2018) Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18:768–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelescu GC, Vamanu E, Stefan RL (2015) Productivity and biological efficiency of Pleurotus eryngii MMIV cultivation at laboratory level. J Agron 14:185–187

    Article  CAS  Google Scholar 

  • Anju RP, Ukkuru M (2016) Health impact and medicinal properties of nutritionally edible milky mushroom (Calocybe indica). Int J Adv Res Sci Eng Technol 3:235–237

    Google Scholar 

  • Annepu SK, Sharma VP, Barh A, Kumar S, Shirur M, Kamal S (2019) Effects of genotype and growing substrate on bio-efficiency of gourmet and medicinal mushroom, Lentinula edodes (Berk.) Pegler. Bangladesh J Bot 48:129–138

    Article  Google Scholar 

  • Apetorgbor AK, Apetorgbor MM, Derkyi NSA (2015) Comparative studies on growth and yield of oil palm mushroom, Volvariella Volvacea (Bull. Ex. Fr.) Sing. on different substrates. Greener J Agric Sci 5:177–189

    Article  Google Scholar 

  • Arita I (1978) Pholiota nameko. In: Chang ST, Hayes WA (eds) The biology and cultivation of edible mushrooms. Academic, New York, pp 475–496

    Chapter  Google Scholar 

  • Arora D (1986) Mushrooms demystified. Ten Speed Press, Berkeley, CA

    Google Scholar 

  • Ashraf J, Ali MA, Ahmad W, Chaudhry MA, Shafi J (2013) Effect of different substrate supplements on oyster mushroom (Pleurotus spp.) production. Food Sci Technol 1:44–51

    Article  Google Scholar 

  • Atila F (2017) Evaluation of suitability of various agro-wastes for productivity of Pleurotus djamor, Pleurotus citrinopileatus and Pleurotus eryngii mushrooms. J Exp Agric Int 17:1–11. https://doi.org/10.9734/JEAI/2017/36346

    Article  Google Scholar 

  • Baghel VS (2018) Biodegradation of lignocellulosic wastes by cultivation of mushrooms as nutrient source. Int J Sci Res 9:804–808

    Google Scholar 

  • Banerjee DK, Das AK, Banerjee R, Pateiro M, Nanda PK, Gadekar YP, Biswas S, Mcclements DJ, Lorenzo JM (2020) Application of enoki mushroom (Flammulina velutipes) stem wastes as functional ingredients in goat meat nuggets. Foods 9:432

    Article  CAS  PubMed Central  Google Scholar 

  • Bano Z, Rajrathnam S, Nagrajan N (1978) Some aspects on the cultivation of Pleurotus flabellatus in India. Mush Sci 10:597–607

    Google Scholar 

  • Barreto S, Lopez M, Levin L (2008) Effect of culture parameters on the production of the edible mushroom Grifola frondosa (maitake) in tropical weathers. World J Microbiol Biotechnol 24:1361–1366

    Article  Google Scholar 

  • Belewu MA, Belewu KY (2005) Cultivation of mushroom (Volvariella volvacea) on banana leaves. Afr J Biotechnol 4:1401–1403. https://doi.org/10.4314/ajb.v4i12.714

    Article  Google Scholar 

  • Bharti V (2019) Standardisation of cultivation technology of new tropical mushroom Macrocybe gigantea (Massee) Pegler &Lodge, Ph.D thesis, Sher-E-Kashmir Univ. of Agricultural Sciences and Technology (SKUAST), Jammu

    Google Scholar 

  • Bhatt P, Kushwaha KPS, Singh RP (2007) Evaluation of different substrates and casing mixtures for production of Calocybe indica. Indian Phytopath 60:128–130

    Google Scholar 

  • Bhupathi P, Krishnamoorthy AS, Uthandi A (2017) Profiling of morphogenesis related enzymes of milky mushroom Calocybe indica (P&C). J Pharmacognosy Phytochem 6:2537–2543

    CAS  Google Scholar 

  • Bhuvaneshwari S, Hettiarachchi H, Meegoda JN (2019) Crop residue burning in India: policy challenges and potential solutions. Int J Environ Res Public Health 16:832

    Article  CAS  PubMed Central  Google Scholar 

  • Bokaria K, Balsundram SK, Bhattarai I, Kaphle K (2014) Commercial production of milky mushroom (Calocybe indica). Merit Res J 2:32–37

    Google Scholar 

  • Calvo MS, Mehrotra A, Nadkarni G, Wang L, Cai W, Goh BC, Kalaras MD, Uribarri J (2016) A retrospective study in adults with metabolic syndrome: dabetic risk factor response to daily consumption of Agaricus bisporus (white button mushrooms). Plant Foods Hum Nutr 71:245–251

    Article  CAS  PubMed  Google Scholar 

  • Cavazzoni V, Manzoni M (1994) Extracellular cellulytic complex from Morchella conica: production and purification. Food Sci Technol 27:73–77

    CAS  Google Scholar 

  • Chahal DS (1992) Bioconversions of polysaccharides of lignocellulose and simultaneous degradation of lignin. In: Kennedy et al (eds) Lignocellulosics: science, technology, development and use. Ellis Horwood Limited, England, pp 83–93

    Google Scholar 

  • Chahal PS, Chahal DS (1998) Lignocellulosic wastes: biological conversion. In: Martin AM (ed) Bioconversion of waste materials to industrial products. Springer, Boston, MA

    Google Scholar 

  • Chakraborty B, Chakraborty U, Barman S, Roy S (2016) Effect of different substrates and casing materials on growth and yield of Calocybe indica (P&C) in North Bengal, India. J Appl Nat Sci 8:683–690

    Article  Google Scholar 

  • Chakravarthy DK, Sarkar BB, Kundu BM (1981) Cultivation of Calocybe indica, a tropical edible mushroom. Curr Sci 50:550–555

    Google Scholar 

  • Chandra O, Chaubey K (2017) Volvariella volvacea: a paddy straw mushroom having some therapeutic and health prospective importance. World J Pharm Pharm Sci 6:1291–1300

    CAS  Google Scholar 

  • Chang ST (1974) Production of straw mushroom (Volvariella volvacea) from cotton wastes. Mushroom J 21:348–354

    Google Scholar 

  • Chang ST (1993) Biology and cultivation technology of Volvariella volvacea. In: Mushroom biology and mushroom products. Proceedings of Ist international conference, Hong Kong, pp 78–83

    Google Scholar 

  • Chang ST, Wasser SP (2017) The cultivation and environmental impact of mushrooms. In: Oxford research encyclopedia of environmental science. Oxford University Press, Oxford. https://doi.org/10.1093/acrefore/9780199389414.013.231

    Chapter  Google Scholar 

  • Chen KL, Chao DM (1997) Ling Zhi (Ganoderma species). In: Hsu KT (ed) Chinese medicinal mycology. United Press of Beijing Medical University and Chinese United Medical University, Beijing, pp 496–517. (in Chinese)

    Google Scholar 

  • Chen HZ, Chen JW (2004) A preliminary report on solid-state fermentation of Ganoderma lucidum with Radix astragali containing medium. Chin J Integr Med 2:216–218

    Article  CAS  Google Scholar 

  • Chen HZ, He Q (2012) Value added bioconversion of biomass by solid-state fermentation. J Chem Technol Biotechnol 87:1619–1625

    Article  CAS  Google Scholar 

  • Chen AW, Huang NL (2001) Production of the medicinal mushroom Tremella fuciformis Berk. by mixed culture cultivation on synthetic logs. Int J Med Mushrooms 3:1

    Google Scholar 

  • Chen L, Zhao B, Liu S, Zuo (2012) Application of response surface methodology to optimize microwave-assisted extraction of polysaccharide from Tremella. Phys Procedia 24:429–433

    Article  CAS  Google Scholar 

  • Cheng KF, Leung PC (2008) General review of polysaccharopeptides (PSP) from C. versicolor: pharmacological and clinical studies. Cancer Ther 6:117–130

    CAS  Google Scholar 

  • Cherney JH, Cherney JR, Akin DE, Axtell JD (1991) Potential of brown-midrib, low-lignin mutants for improving forage quality. Adv Agron 46:157–198

    Article  CAS  Google Scholar 

  • Chinara N, Mahapatra SS (2020) Effect of different supplements for production of milky mushroom (Calocybe indica P&C) in Odisha. Int J Curr Microbiol App Sci 9:2196–2200

    Article  Google Scholar 

  • Chitamba J, Dube F, Chiota W, Handiseni M (2012) Evaluation of substrate productivity and market quality if oyster mushroom (Pleurotus ostreatus) grown on different substrates. Int J Agri Res 7:100–106

    Article  Google Scholar 

  • Chiwan AA, Sumbali G (2016) Screening of different lignocellulosic wastes for the productive potential of milky mushroom Calocybe indica, (CI-3 strain). In: Proceedings of International Society for Engineers and Researchers, 33rd international conference, New Delhi, vol 1, pp 56–60

    Google Scholar 

  • Choi SW, Chang HY, Yoon JW, Lee C (2008) Optimization of artificial cultivation of Tremella fuciformis in closed culture bottle. J Mushroom Sci 6:20–26

    Google Scholar 

  • Choi BS, Sapkota K, Choi JH, Shin CH, Kim S, Kim SJ (2013) Herinase: a novel bi-functional fibrinolytic protease from the monkey head mushroom, Hericium erinaceum. Appl Biochem Biotechnol 170:609–622

    Article  CAS  PubMed  Google Scholar 

  • Cruz SC, Sanchez JE, Valle-Mora J (2017) Agaricus bisporus production on substrates pasteurized by self-heating. AMB Express 7:135

    Article  Google Scholar 

  • Dahunsi SO, Oranusi US (2013) Codigestion of food waste and human excreta for biogas production. Br Biotech J 3:485–499

    Article  CAS  Google Scholar 

  • Dahunsi SO, Oranusi S, Owolabi JB, Efeovbokhan VE (2016) Comparative biogas generation from fruit peels of fluted pumpkin (Telfairia occidentalis) and its optimization. Bioresour Technol 221:517–525

    Article  CAS  PubMed  Google Scholar 

  • Dai YC, Tuli GE, Cui BK, Qin GF (2013) Illustrations of medicinal fungi China. The Northeast Forestry University Press Publication, Harbin

    Google Scholar 

  • Das ST, Mukherjee JA (2007) Mushroom biology and mushroom products. The Chinese University Press, Hong Kong, pp 261–266

    Google Scholar 

  • Das N, Mahapatra SC, Chattopadhyay RN (2000) Use of wild grasses as substrate for the cultivation of oyster mushroom in South West Bengal. Mushroom Res 9:95–99

    Google Scholar 

  • Das N, Mahapatra SC, Chattopadhyay RN (2002) Utilization of Sabai grass (Eulaliopsis binatat C.E. Hubb), as a substrate for oyster mushroom cultivation in West Bengal. Int J Mushrooms 20:34–35

    Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehariya P, Vyas D (2013) Effect of different agro-waste substrates and their combinations on the yield and biological efficiency of Pleurotus sajor-caju. IOSR J Pharm Biol Sci 8:60–64

    Google Scholar 

  • Demirbas A (2009) Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater 167:1–9

    Article  CAS  PubMed  Google Scholar 

  • Devi S, Sumbali G (2018a) Comparative study on the growth and yield of oyster mushroom (Pleurotus ostreatus f. florida Cetto) on some common agricultural and garden wastes. Mushroom Res 27:127–136

    Google Scholar 

  • Devi S, Sumbali G (2018b) Yield performance and nutritional value of oyster mushroom (Pleurotus ostreatus f. florida) on different forest wastes. Prog Agric 19:76–84

    Article  Google Scholar 

  • Devi S, Sumbali G (2021) Suitability of three different cereal grains for spawn development and their impact on the growth and yield of Macrocybe gigantea (Massee) Pegler & Lod. J Appl Natl Sci 13:204–209

    Article  CAS  Google Scholar 

  • Devi AP, Veeralakshmi S, Prakasam V, Vinothini M (2013) Saw dust and wheat bran substrates for the cultivation of new wood ear mushroom (Auricularia polytricha Mont. Sacc.). Am Eur J Agric Environ Sci 13:1647–1649

    Google Scholar 

  • Dhakad PK, Chandra R, Yadav MK, Patar UR (2015) Comparative study on growth parameters and yield potential of five strains of milky mushroom (Calocybe indica). J Pure Appl Microbiol 9:1–5

    Google Scholar 

  • Diallo A, Deschasaux M, Latino-Martel P, Hercberg S, Galan P, Fassier P, Alles B, Gueraud F, Pierre FH, Touvier M (2018) Red and processed meat intake and cancer risk: results from the prospective NutriNet-Sante cohort study. Int J Cancer 142:230–237

    Article  CAS  PubMed  Google Scholar 

  • Doshi A, Sidana N, Chakravarti BP (1989) Cultivation of summer white mushroom C. indica (P&C) in Rajasthan. Mushroom Sci 12:395–400

    Google Scholar 

  • Dundar A, Acay H, Yildiz A (2009) Effect of using different lignocellulosic wastes for cultivation of Pleurotus ostreatus (Jacq.) P. Kumm. on mushroom yield, chemical composition and nutritional value. Afr J Biotechnol 8:662–666

    CAS  Google Scholar 

  • Ediriweera SS, Wijesundera RLC, Nanayakkara CM, Weerasena OVDSJ (2015) Comparative study of growth and yield of edible mushrooms, Schizophyllum commune Fr., Auricularia polytricha (Mont.) Sacc. and Lentinus squarrosulus Mont. on lignocellulosic substrates. Mycosphere 6:760–765

    Article  Google Scholar 

  • Ehlers S, Schnitzler W (2000) Studies on the growth of the basidomycete Hericium erinaceus (Bull Ex Fr.) pers. Champignon 415:147–150

    Google Scholar 

  • Eichorst SA, Kuske CR (2012) Identification of cellulose responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl Environ Microbiol 78:2316–2327. https://doi.org/10.1128/aem.07313-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elisashvili V, Kachlishvili E, Asatiani M (2015) Shiitake medicinal mushroom, Lentinus edodes (higher basidiomycetes) productivity and lignocellulolytic enzyme profiles during wheat straw and tree leaf bioconversion. Int J Med Mushrooms 17:77–86

    Article  PubMed  Google Scholar 

  • Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and components. Springer, Berlin, pp 1–399

    Book  Google Scholar 

  • Erkel EI (2009) The effect of different substrate mediums on yield of Ganoderma lucidum (Fr.) Karst. J Food Agric Environ 7:841–844

    Google Scholar 

  • Eswaran A, Thomas S (2003) Effect of various substrates and additives on the sporophore yield of Calocybe indica and Pleurotus eous. Indian J Mushrooms XXI:8–10

    Google Scholar 

  • Figlas D, Matute R, Crvetto N (2007) Cultivation of culinary-medicinal lion’s mane mushroom Hericium erinaceus (bull.:Fr.) Pers. (Aphyllophoromycetideae) on substrate containing sunflower seed hulls. Int J Med Mushrooms 9:67–73

    Article  Google Scholar 

  • Ganeshan G, Tewari R, Bhargava B (1989) Influence of residual vegetable crop on yield and mineral content of Pleurotus sajor-caju. Mushroom Sci 12:91–97

    Google Scholar 

  • Ganeshpurkar A, Rai G, Jain AP (2010) Medicinal mushrooms: towards a new horizon. Pharmacogn Rev 4:127–135. https://doi.org/10.4103/0973-7847.70904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur T, Rao PB (2016) Antioxidant potential of the giant mushroom (Macrocybe gigantea) from India in different drying methods. Int J Med Mushr 18:133–140

    Article  Google Scholar 

  • Gizaw B (2015) Cultivation and yield performance of Pholiota nameko on different agro industrial wastes. Acad J Food Res 3:32–42

    Google Scholar 

  • Gonzalez TB, Catarino MC, Villanueva GB, Flores AR, Rios MDA, Salgado JP (2015) Cultivation of Ganoderma lucidum on agricultural by-products in Mexico. Micol Aplicada Int 27:25–30

    Google Scholar 

  • Gregori A, Svagel M, Pohleven J (2007) Cultivation techniques and medicinal properties of Pleurotus spp. Food Technol Biotechnol 45:238–249

    Google Scholar 

  • Gregori A, Svagelj M, Berovic M, Liu Y, Zhang J, Pohleven F, Klinar D (2009) Cultivation and bioactivity assessment of Grifola frondosa fruiting bodies on olive oil press cakes substrates. New Biotechnol 26:260–262. https://doi.org/10.1016/j.nbt.2009.08.001

    Article  CAS  Google Scholar 

  • Gu CQ, Li JW, Chao F, Jin M, Wang XW, Shen ZQ (2007) Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa. Antivir Res 75:250–257

    Article  CAS  PubMed  Google Scholar 

  • Guerrero DG, Martinez VE, Almaraz RDT (2011) Cultivation of Trametes versicolor in Mexico. Micol Apl Int 23:55–58

    Google Scholar 

  • Gurung OK, Budathoki U, Parajuli G (2012) Effect of different substrates on the production of Ganoderma lucidum (Curt: Fr) Karst. Our Nature 10:191–198

    Article  Google Scholar 

  • Harith N, Abdullah N, Sabaratnam V (2014) Cultivation of Flammulina velutipes mushroom using various agro-residues as a fruiting substrate. Pesqui Agropecu Bras 49:181–188

    Article  Google Scholar 

  • Hassan FRH (2007) Cultivation of the monkey head mushroom (Hericium erinaceus) in Egypt. J App Sci Res 3:1229–1233

    Google Scholar 

  • Hassan FRH, Ghada MM, Hussein SDA (2010) Cultivation of the king oyster mushroom (Pleurotus eryngii) in Egypt. Aust J Basic Appl Sci 4:99–105

    CAS  Google Scholar 

  • Hernandez RG, Esqueda M, Gutierrez A, Sanchez A, Beltran-Garcia M, Mata G (2006) Bioconversion of agrowastes by Lentinula edodes: the high potential of viticulture residues. Appl Microbiol Biotechnol 71:432–439

    Article  Google Scholar 

  • Hernandez RG, Cortes N, Mata G (2014) Improvement of yield of the edible and medicinal mushroom Lentinula edodes on wheat straw by use of supplemented spawn. Braz J Microbiol 45:467–474

    Article  Google Scholar 

  • Hu SH, Wang JC, Wu CY, Hsieh SL, Chen KS, Chang SJ, Liang ZC (2008) Bioconversion of agro wastes for the cultivation of the culinary-medicinal lion’s mane mushrooms Hericium erinaceus (Bull.: Fr.) Pers. and H. laciniatum (Leers) Banker (Aphyllophoromycetideae) in Taiwan. Int J Med Mushrooms 10:385–398

    Article  Google Scholar 

  • Huang NL (2001) Suitable for cultivation of rare mushroom in the tropics: Macrocybe gigantea (Massee) Pegler & Lodge. Edible Fungi 5:12–13

    Google Scholar 

  • Huang SJ, Tsai SY, Lin SY, Liang CH, Mau JL (2011) Nonvolatile taste components of culinary—medicinal maitake mushroom, Grifola frondosa (Dicks.:Fr.) S.F. Gray. Int J Med Mushroom 13(3):265–272

    Article  CAS  Google Scholar 

  • Hung PV, Nhi NNY (2012) Nutritional composition and antioxidant capacity of several edible mushrooms grown in the Southern Vietnam. Int Food Res J 19:611–615

    CAS  Google Scholar 

  • Inyod T, Sassanarakit S, Payapanon A, Keawsompong S (2016) Selection of Macrocybe crassa mushroom for commercial production. Agric Nat Resour 50:186–191

    CAS  Google Scholar 

  • Iqbal MSH, Rauf A, Sheikh IM (2005) Yield performance of oyster mushroom on different substrates. Int J Agric Biol 7:900–903

    Google Scholar 

  • Iqbal B, Khan H, Saifullah KI, Shah B, Naeem A, Ullah W, Khan N, Adnan M, Shah SRA, Junaid K, Ahmed N, Iqbal M (2016) Substrates evaluation for the quality, production and growth of oyster mushroom (Pleurotus florida Cetto). J Entomol Zool Stud 4:98–107

    Google Scholar 

  • Irawati D, Hayashi C, Takashima Y, Wedatama S, Ishiguri F, Iizuka K, Yoshizawa N, Yokota S (2012) Cultivation of the edible mushroom Auricularia polytricha using saw dust based substrate made of three Indonesian commercial plantation species, Falcataria moluccana, Shorea spp. and Tectona grandis. Mycol Aplicada Int 24:33–41

    Google Scholar 

  • Isikhuemhen OS, Mikiashvili NA, Kelkar V (2009) Application of solid waste from anaerobic digestion of poultry litter in Agrocybe aegerita cultivation: mushroom production, lignocellulolytic enzymes activity and substrate utilization. Biodegradation 2:351–361

    Article  Google Scholar 

  • Jasinska A, Siwulski M, Sobieralski K (2012) Mycelium growth and yielding of black poplar mushroom-Agrocybe aegerita (Brig.) Sing. on different substrates. J Agric Sci Technol 2:1040–1047

    Google Scholar 

  • Jasmina C, Milica G, Jelena V, Ilija Bi, Mirjana S (2017) Potential of selected fungal species to degrade wheat straw, the most abundant plant raw material in Europe. https://doi.org/10.1186/s12870-017-1196-y

  • Jebapriya GR, Gnanasalomi VDV, Gnanadoss JJ (2013) Application of mushroom fungi in solid waste management. Int J Comput Algor 2:279–285

    Google Scholar 

  • Jeewanthi LAMN, Jeewanthi RK, Rajapakse P (2017) Growth and yield of reishi mushroom (Ganoderma lucidum (Curtis) P. Karst) in different sawdust substrates. J Food Agric 10:8–16

    Article  Google Scholar 

  • Ji H, Wang Q, Wang H, Chen WJ, Zhu CH, Hou H, Zhang Z (2001) A fundamental research of mushroom cultivation using maize straw. Edible Fungi China 20:10–12

    Google Scholar 

  • Ji Z, Tang Q, Zhang J, Yang Y, Jia W, Pan Y (2007) Immunomodulation of RAW264.7 macrophages by GLIS, a proteopolysaccharide from Ganoderma lucidum. J Ethnopharmacol 112:445–450

    Article  CAS  PubMed  Google Scholar 

  • Jo WS, Hwang EK, Kang MJ, Choi SY (2010) Fruit-body production of Auricularia auricula-judae by sawdust cultivation. Kor J Mycol 38:5–7

    Article  Google Scholar 

  • Karma A, Bhatt AB (2013) First attempt of an organic cultivation of red Ganoderma lucidum under subtropical habitat and its economics. Intl J Pharm Sci 5:94–98

    Google Scholar 

  • Karnan M, Tamilkani P, Govindara (2016) Cultivation, nutrition, biochemicals and enzyme analysis of paddy straw. Int J Curr Res 8:27303–27308

    CAS  Google Scholar 

  • Karthick K, Hamsalakshmi H (2017) Current scenario of mushroom industry in India. Int J Commerce Manag Res 3:23–26

    Google Scholar 

  • Kaur M, Kaur K, Devi R, Kapoor S (2019) Wheat straw and maize stalks based compost for cultivation of Agaricus bisporus. Phar Innov J 8:393–397

    CAS  Google Scholar 

  • Khan M, Tania M (2012) Nutritional and medicinal importance of Pleurotus mushroom: an overview. Food Rev Int 28:313–329

    Article  CAS  Google Scholar 

  • Khan SM, Mirza JH, Khan MA (1991) Physiology and cultivation of wood ear mushroom (Auricularia polytricha). Mushroom Sci 13:573–578

    Google Scholar 

  • Khan MA, Tania M, Liu R, Rahman MM (2013) Hericium erinaceus: An edible mushroom with medicinal values. Complement Integr Med 10:253–258

    Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Kim HK, Park JS, Kim YS, Cha DY (1990) Studies on the artificial cultivation of Agrocybe aegerita (Brig) Sing using pine sawdust substrate. Numerical Data 17:24–31

    Google Scholar 

  • Kim HK, Kim YK, Seo GS, Oh SH, Kim HG (2006) The study of sawdust cultivation and the characteristics of mycelial growth of Pholiota nameko. J Mushroom Sci Prod 4:62–67

    Google Scholar 

  • Kirbag S, Akyuz M (2008) Evaluation of agricultural wastes for the cultivation of Pleurotus eryngii (DC ex Fr.) Quel var ferulae Lanzi. Afr J Biotechnol 7:3660–3664

    Google Scholar 

  • Kirk TK, Higuchi T, Chang HM (1980) Lignin biodegradation: microbiology, chemistry and potential applications, vol 2. CRC Press, Boca Ralton, pp 17–31

    Google Scholar 

  • Knezevic A, Stajic M, Sofrenic I, Stanojkovic T, Milovanovic I, Tesvic V (2018) Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS One 13(8):e020306

    Article  Google Scholar 

  • Ko HG, Park HG, Park SHO, Choi CW, Kim SH, Park WM (2005) Comparative study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium. Bioresour Technol 96:1439–1444

    Article  CAS  PubMed  Google Scholar 

  • Koutrotsios G, Patsou M, Mitsou EK, Bekiaris G, Kotsou M, Tarantilis PA (2019) Valorization of olive by products as substrates for the cultivation of Ganoderma lucidum and Pleurotus ostreatus mushrooms with enhanced functional and prebiotic properties. Catalysts 9:537

    Article  CAS  Google Scholar 

  • Kumar R, Singh G, Mishra P (2012) Effect of inorganic supplements on growth and yield of different strains of milky mushroom (Calocybe indica). J Mycol Plant Pathol 42:332–335

    CAS  Google Scholar 

  • Kumar P, Kumar S, Lal M, Ali M (2013) Mushrooms cultivation: an emerging agribusiness for self employment and entrepreneur development. Agriways 1:147–154

    Google Scholar 

  • Kumar V, Kumar P, Singh J, Kumar P (2021) Use of sugar mill wastewater for Agaricus bisporus cultivation: prediction models for trace metal uptake and health risk assessment. Environ Sci Pollut Res 28:1–12

    Article  CAS  Google Scholar 

  • Kumla J, Suwannarach N, Sujarit K, Penkhrue W, Kakumyan P, Jatuwong K, Vadthanarat S, Lumyong S (2020) Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agroindustrial waste. Molecules 25:2811. https://doi.org/10.3390/molecules25122811

    Article  CAS  PubMed Central  Google Scholar 

  • Kurtzman CT (1976) Solid state fermentation of lignin by Pleurotus eous (Berk) Sacc. Int J Plant Sci 7:224–229

    Google Scholar 

  • Kushwaha KPS, Pratibha B, Singh RP (2006) Evaluation of different substrate for yield performance of Auricularia polytricha a medicinal mushroom. Int J Agric Sci 2:389–391

    Google Scholar 

  • Kushwaha KPS, Kushwaha A, Mishra SK (2016) Yield evaluation of Macrocybe gigantea (Massee) Pegler & Lodge (giant mushroom) on locally available different agro-wastes. Adv Life Sci 5:11277–11278

    Google Scholar 

  • Kwon E, Westby KJ, Castaldi MJ (2010) Transforming municipal solid waste (MSW) into fuel via the gasification/pyrolysis process. In: 18th annual North American waste to energy conference. https://doi.org/10.1115/nawtec18-355

  • Lakshmipathy G, Jayakumar A, Meera A, Premraj S (2012) Optimization of growth promoters for increased yield of edible mushroom Calocybe indica. Afr J Biotechnol 11:7701–7710

    CAS  Google Scholar 

  • Leifa F, Pandey A, Soccol CR (2001) Production of Flammulina velutipes on coffee husk and coffee spent ground. Braz Arc Biol Technol 44:205–212

    Article  CAS  Google Scholar 

  • Li CH, Chen PY, Chang UM, Kan LS, Fang WH, Tsai KS, Lin SB (2005) Ganodermic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells. Life Sci 77:252–265

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang Z, Li M, Li X, Sun Z (2016) Yield, size nutritional value, and antioxidant activity of oyster mushrooms grown on perilla stalks. Saudi J Biol Sci 24:347–354

    Article  Google Scholar 

  • Li H, He Z, Jiang Y, Kan JPeng T, Zhong M, Hu Z (2020) Bioconversion of bamboo shoot shells through the cultivation of the edible mushrooms Volvariella volvacea. Ecotoxicology. https://doi.org/10.1007/s10646-020-02281-6

  • Liang CH, Wu CY, Lu PL, Kuo YC, Liang ZC (2016) Biological efficiency and nutritional value of the culinary-medicinal mushroom Auricularia cultivated on a sawdust basal substrate supplement with different proportions of grass plants. Saudi J Biol Sci 26:263–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang CH, Wu CY, Lu PL, Kuo YC, Liang ZC (2019) Biological efficiency and nutritional value of the culinary-medicinal mushroom Auricularia cultivated on a sawdust basal substrate supplement with different proportions of grass plants. Saudi J Biol Sci 26:263–269

    Article  CAS  PubMed  Google Scholar 

  • Lin ZB, Zhang HN (2004) Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin 25:1387–1395

    CAS  PubMed  Google Scholar 

  • Lindequist U, Niedermeyer THJ, Julich WD (2005) The pharmacological potential of mushrooms. eCAM:285–299

    Google Scholar 

  • Liu JY, Xu WL, Liu JH (2007) Status and development of municipal solid waste incineration technology in China. In: Proceeding of China association of urban environmental sanitation. Annual congress. China City Press, Beijing, pp 252–262

    Google Scholar 

  • Lombard V, Ramulu HC, Drula E, Pedro M (2013) Henrissat CB. The carbohydrate-active enzymes database (CAZy) Nucl Acid Res 42:490–D495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  Google Scholar 

  • Lopez Mondejar R, Zuhlke D, Becher D (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:252–279. https://doi.org/10.1038/srep25279

    Article  CAS  Google Scholar 

  • Lu QG, Gui YW, Tong XI (1989) Mycelium growth and mushroom yield of Flammulina velutipes on different culture media. Jiangsu Agric Sci 3:26–27

    Google Scholar 

  • Ma G, Yang W, Zhao L, Pei F, Fang D, Hu Q (2018) A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci Hum Well 7:125–133

    Article  Google Scholar 

  • Maddau L, Franceschini A, Serra S, Marras F (2002) Influence of aeration on development and productivity of edible and medicinal mushroom Pleurotus eryngii (DC: Fr) Quel (first contribution). Int J Med Mush 4:59–61

    Article  Google Scholar 

  • Madeira JV, Contesini JR, Calzado FJ, Rubio F, Zubieta MV, Lopes MP, Melo DB (2017) Agro-industrial residues and microbial enzymes: an overview on the eco-friendly bioconversion into high value-added products. In: Brahmachari G (ed) Biotechnol microb enzymes. Elsevier, Amsterdam, pp 475–511

    Chapter  Google Scholar 

  • Manimuthu M, Rajendran S (2015) Can oyster mushroom be cultivated on seagrass. Int J Adv Res 3:962–966

    CAS  Google Scholar 

  • Manning K, Wood DA (1983) Production and regulation of extracellular endo-cellulase by Agaricus bisporus. J Gen Microbiol 129:1839–1847

    CAS  Google Scholar 

  • Maurya AK, Kumar P, Singh V, Kumar S (2016) Evaluation of substrates and supplements for enhancing the productivity of paddy straw mushroom (Volvariella volvacea). Res Environ Life Sci 9:717–720

    Google Scholar 

  • Menaga D, Mahalingam PU, Rajakumar K, Ayyasamy PM (2012) Evaluation of phytochemical and antimicrobial activity of Pleurotus florida mushroom. Asian J Pharm Clin Res 5:102–106

    Google Scholar 

  • Mendez LA, Castro CAS, Casso RB, Leal CMC (2005) Effect of substrate and harvest on the amino acid profile of oyster mushroom (Pleurotus ostreatus). J Food Compos Anal 18:447–450

    Article  CAS  Google Scholar 

  • Mohanan C (2011) Macrofungi of Kerala. Kerala Forest Research Institute, Hand book 27, Kerala, India, 597 pp

    Google Scholar 

  • Montingelli ME, Benyounis KY, Quilty B, Stokes J, Olabi AG (2016) Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland. Appl Energy 177:671–682. https://doi.org/10.1016/j.apenergy.2016.05.150

    Article  CAS  Google Scholar 

  • Montoya S, Orrego CE, Levin L (2012) Growth, fruiting and lignocellulolytic enzyme production by the edible mushroom Grifola frondosa (maitake). World J Microbiol Biotechnol 28:1533–1541

    Article  CAS  PubMed  Google Scholar 

  • Morais MH, Ramos AC, Matos N, Santos-Olivera EJ (2000) Production of shiitake mushroom (Lentinula edodes) on lignocellulosic residues. Food Sci Tech Int 6:123–128

    Article  CAS  Google Scholar 

  • Murugesan AG, Vijayalakshmi GS, Sukumaran N, Mariappan C (1995) Utilization of water hyacinth for oyster mushroom cultivation. Bioresour Technol 51:97–98

    Article  CAS  Google Scholar 

  • Muszynska B, KaÅ‚a K, WÅ‚odarczyk A (2020) Lentinula edodes as a source of bioelements released into artificial digestive juices and potential anti-inflammatory material. Biol Trace Elem Res 194:603–613

    Article  CAS  PubMed  Google Scholar 

  • Navathe S, Borkar P (2014) Cultivation of Calocybe indica (P & C) in Konkan region of Maharashtra, India. World J Agric Res 2:187–191

    Article  Google Scholar 

  • Netam RS, Yadav SC, Mukherjee SC, Kumari P (2018) Cultivation of button mushroom (Agaricus bisporus) under controlled condition: an initiative in Bastar Plateau of Chhattisgarh. Int J Curr Microbiol Appl Sci 7:782–787

    Article  CAS  Google Scholar 

  • Ngai PHK, Zhao Z, Ng ZZ (2005) Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides 26:191–196

    Article  CAS  PubMed  Google Scholar 

  • Nguyen QA (1993) Economic analyses of integrating a biomass to ethanol plant into a pulp/saw mill. In: Saddler (ed) Bioconversion of forest and agricultural plant. CAB International, Wallingford, pp 321–340

    Google Scholar 

  • Nguyen BTT, Le VV, Nguyen HTT, Nguyen LTT, Tran TTT, Ngo NX (2021) Nutritional requirements for the enhanced mycelial growth and yield performance of Trametes versicolor. J Appl Biol Biotechnol 9:1–7

    CAS  Google Scholar 

  • Ninluam N, Potiprasert W, Romreun U, Bangyeekhun E (2016) Cultivation of Lingzhi mushroom, Ganoderma lucidum, by using sugarcane bagasse. Sci Technol Silpakorn Univ 3:2408–1248

    Google Scholar 

  • Nkalo U, Ogbonnaya LO, Arikpo G, Ikpe FN (2009) Cultural studies of mycelial of Volvariella volvacea, Pleurotus tuber-regium and Pleurotus sajor-caju on different culture media. Pak J Nutr 8:1052–1054

    Article  Google Scholar 

  • Ohga S, Royse DJ (2004) Cultivation of Pleurotus eryngii on umbrella plant (Cyperus alternifolius) substrate. J Wood Sci 50:466–469

    Article  Google Scholar 

  • Okino L, Machado K, Fabris C, Bononi VLR (2000) Ligninolytic activity of tropical rainforest basidiomycetes. World J Microbiol Biotechnol 16:8–9

    Article  Google Scholar 

  • Onyango BO, Palapala VA, Arama PF, Wagai SO, Gichimu BM (2011) Suitability of selected supplemented substrates for cultivation of Kenyan native wood ear mushrooms (Auricularia auricula). Amer J Food Technol 6:395–403

    Article  Google Scholar 

  • Osemwegie OO, Isikhuemhen OS, Onyolu OJ, Okhuoya JA (2002) Cultivation of a selected sporophore only producing strain of the edible and medicinal mushroom, Pleurotus tuberregium (Fr.) Singer (Agaricomycetideae) on waste paper and plantain peelings. Int J Med Mush 4:343–348

    Google Scholar 

  • Owaid MN, Barish A, Shariati MA (2017) Cultivation of Agaricus bisporus (button mushroom) and its usages in the biosynthesis of nanoparticles. Open Agric 2:537–543

    Article  Google Scholar 

  • Ozcelik E, Peksen A (2006) Hazelnut husk as a substrate for the cultivation of shiitake mushroom (Lentinula edodes). Bioresour Technol 98(14):2652–2658

    Article  PubMed  Google Scholar 

  • Pamitha NS (2014) Medicinal and nutriceutical potential of giant mushroom (Macrocybe gigantea (Massee) Peglar & Lodge), M.Sc. thesis, Department of Plant Biotechnology, College of Agriculture, Vellayani, India

    Google Scholar 

  • Pandey VV, Kumari A, Kumar M, Saxena J, Kainthola C, Pandey A (2018) Mushroom cultivation: substantial key to food security. J Appl Nat Sci 10:1325–1331

    Article  Google Scholar 

  • Panesar PS, Kaur R, Singla G, Sangwan RS (2016) Bio-processing of agro-industrial wastes for production of food-grade enzymes: progress and prospects. Appl Food Biotechnol 3:208–227

    CAS  Google Scholar 

  • Pani BK (2010) Evaluation of some substrates for cultivation of white summer mushroom (Calocybe indica). Res J Agric Sci 1:357–359

    Google Scholar 

  • Pani BK (2012) Efficacy of edible tropical fungus, Calocybe indica in the biotransformation of some ligno-cellulosic agro-industrial wastes to protein rich foods. Int J Plant Ani Environ Sci 2:158–161

    Google Scholar 

  • Pani B, Panda S, Das S (1997) Utilization of some byproducts and other wastes for sporophore production of oyster mushroom. Orissa J Hortic 25:36–39

    Google Scholar 

  • Park KU, Lee SY, Kim HS, Yamazaki M, Chiba K, Ha HC (2007) The neuroprotective and neurotrophic effects of Tremella fuciformis in PC12h cells. Mycobiology 35:11–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel S, Goyal A (2012) Recent developments in mushrooms as anticancer therapeutics: a review. 3 Biotech 2:1–15

    Article  PubMed  Google Scholar 

  • Patel P, Trivedi R (2016) Yield performance of Calocybe indica on different agricultural substrates. Int Res J Eng IT Sci Res 2:105–111

    CAS  Google Scholar 

  • Paterson RRM (2006) Review Ganoderma—a therapeutic fungal biofactory. Phytochemistry 67:1985–2001

    Article  CAS  PubMed  Google Scholar 

  • Pegler DN, Lodge DJ, Nakasone KK (1998) The pantropical genus Macrocybe gen. nov. Mycologia 90:494–504

    Article  Google Scholar 

  • Permana IG, Meulenter U, Zadrazil F (2004) Cultivation of Pleurotus ostreatus and Lentinus edodes on lignocellolosic substrates for human food and animal feed production. J Agric Rural Dev Tropics Subtrop 80:137–143

    Google Scholar 

  • Perumal K (2009) Indigenous technology on organic cultivation of Reishi. AMM Murugappa Chettiar Research Centre 9:5–12

    Google Scholar 

  • Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen A (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31:812–819

    Article  CAS  Google Scholar 

  • Petre M, Teodorescu A (2012) Biotechnology of agricultural wastes recycling through controlled cultivation of mushrooms. In: Advances in applied biotechnology. Marian Petre, Intech Open. https://doi.org/10.5772/29998

    Chapter  Google Scholar 

  • Petrovska BB, Jordanoski B, Stefov V, Kulevanova S (2001) Investigation of dietary fibers in some edible mushrooms from Macedonia. Nutr Food Sci 31:242–246

    Article  Google Scholar 

  • Philippoussis A, Zervakis G, Diamantopoulou P (2001) Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J Microbiol Biotechnol 17:191–200

    Article  CAS  Google Scholar 

  • Philippoussis A, Diamantopoulou P, Israilides C (2007) Productivity of agricultural residues used for the cultivation of the medicinal fungus Lentinula edodes. Int Biodeterior Biodegrad 59:216–219

    Article  CAS  Google Scholar 

  • Pire DG, Wright JE, Alberto E (2001) Cultivation on shiitake using sawdust from widely available local woods in Argentine. Micol Apl Int 13:87–91

    Google Scholar 

  • Podgornik BB, Berovic M (2007) Grifola frondosa (Dicks Fr.) S.F. Gray (maitake mushroom) medicinal properties, active compounds, and biotechnological cultivation. Int J Med Mushrooms 9:89–108

    Article  Google Scholar 

  • Pothiraj C, Kanmani P, Balaji P (2006) Bioconversion of lignocellulose materials. Mycobiology 34:159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poutambekar US (1995) Cellulase production by the edible mushroom, Volvariella diplasia. World J Microbiol Biotechnol 11:695

    Article  Google Scholar 

  • Prakasam V (2012) Current scenario of mushroom research in India. Indian Phytopathol 65:1–11

    Google Scholar 

  • Prakasam V, Karthikayani B, Thiribhuvanamala G, Chandrasekar G, Veeralakshmi S, Ahila P, Sakthivel K, Malarkodi B (2011) Tricholoma gigantea—a new tropical edible mushroom for commercial cultivation in India. In: Proceedings of the 7th international conference on mushroom biology and mushroom products (ICMBMP7), pp 438–445

    Google Scholar 

  • Ragunathan R, Palaniswamy M, Gurusamy R, Swaminathan (1996) Bioconversiation of agricultural and agro industrial wastes by Pleurotus spp. cultivated. Mushroom Res Newslett 3:17–21

    Google Scholar 

  • Raina P, Gupta A (2006) Evaluation of different substrates, casing soil and its pH levels on the growth and yield of Calocybe indica. Indian J Mushrooms 24:19–23

    Google Scholar 

  • Rajak S, Mahapatra SC, Basu M (2011) Fruit body diameter and crop duration of oyster mushroom grown on different grasses and paddy straw as substrates. Eur J Med Plants 1:10–17

    Article  Google Scholar 

  • Ramkumar L, Ramanathan T, Johnprabagaran J (2012) Evaluation of nutrients, trace metals and antioxidant activity in Volvariella volvacea (Bull. Ex. Fr.) Sing. J Food Agric 24:113–119

    Google Scholar 

  • Rani P, Kalyani K, Prathiba K (2008) Evaluation of lignocellulosic wastes for production of edible mushroom. Appl Biochem Biotechnol 151:151–159

    Article  CAS  PubMed  Google Scholar 

  • Rashad FA, Kattan MHE, Fathy HM, Fattah DAA, Tohamy ME, Farahat AA (2019) Recycling of agro-wastes for Ganoderma lucidum mushroom production and Ganoderma post mushroom substrate as soil amendment. Waste Manag 88:147–159

    Article  CAS  PubMed  Google Scholar 

  • Rathore H, Sharma A, Prasad S, Kumar A, Sharma S, Singh A (2020) Yield, nutritional composition and antioxidant properties Calocybe indica cultivated on wheat straw basal substrate supplemented with nitrogenous tree leaves. Wastes Bio Valor 11:807–815

    Article  CAS  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34:58–69

    Article  CAS  PubMed  Google Scholar 

  • Rawal P, Doshi A (2014) Evaluation of substrate for organic cultivation of milky mushroom (Calocybe indica) strain APK-2. Periodic Res 2:28–30

    Google Scholar 

  • Retuya JRT, Pasana JP, Baladad R (2020) Mushroom shelf: an intervention on mushroom propagation. Philipp J Nat Soc Sci 4:5–10

    Google Scholar 

  • Rodriguez G, Lama A, Rodríguez R, Jiménez A, Guillén R, Fernandez-Bolanos J (2008) Olive stone an attractive source of bioactive and valuable compounds. Bioresour Technol 99:5261–5269

    Article  CAS  PubMed  Google Scholar 

  • Rossi IH, Monteiro AC, Machado JO, Andrioli JL, Barbosa JC (2003) Shiitake Lentinula edodes production on a sterilized bagasse substrates enriched with rice bran and sugarcane molasses. Braz J Microbiol 34:66–71

    Google Scholar 

  • Roy Das A, Saha AK, Das P (2017) Proximate composition and antimicrobial activity of three wild edible mushrooms consumed by ethnic inhabitants of Tripura in Northeast India. Stud Fungi 2:17–25. https://doi.org/10.5943/sif/2/1/3

    Article  Google Scholar 

  • Roy S, Jahan M, Das K, Munshi S, Noor R (2015) Artificial cultivation of Ganoderma lucidum (reishi medicinal mushroom) using different sawdusts as substrates. Am J Biosci 3:178–182. https://doi.org/10.11648/j.ajbio.20150305.13

    Article  CAS  Google Scholar 

  • Royse D (2007) ICT web development. http://www.path.cas.psu.edu/FACULTY/royse.htm

  • Royse DJ, Baars J, Tan Q (2017) Current overview of mushroom production in the world. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, Hoboken, pp 5–13

    Chapter  Google Scholar 

  • Sadler M (2003) Nutritional properties of edible fungi. Nutr Bull 28:305–308

    Article  Google Scholar 

  • Salmones D, Mata G, Ramos LM, Waliszeski KN (1999) Cultivation of shiitake mushroom, Lentinula edodes, in several lignocellulosic materials originating from the subtropics. Agronomie 19:13–19

    Article  Google Scholar 

  • Sambusiti F, Monlau E, Ficara H, Carrere H, Malpei F (2013) A comparison of different pretreatments to increase methane production from two agricultural substrates. Appl Energy 104:62–70

    Article  CAS  Google Scholar 

  • Sanchez C (2009) Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 85:1321–1337. https://doi.org/10.1007/s00253-009-2343-7

    Article  CAS  PubMed  Google Scholar 

  • Sangkaew M, Koh K (2017) The cultivation of Flammulina velutipes by using sunflower residues as mushroom substrate. J Adv Agric Technol 4:140–144

    Google Scholar 

  • Selvaraju S, Vasanth M, Muralidharan R, Rajan RR (2015) Yield potential of milky mushroom—Calocybe indica (APK-2) with respect to various agricultural wastes. World J Pharma Res 4:1499–1508

    Google Scholar 

  • Sharma VP, Kumar S, Tewari RP (2009) Flammulina velutipes, the culinary medicinal winter mushroom. Yugantar Prakashan, New Delhi, p 53

    Google Scholar 

  • Sharma S, Khanna PK, Kapoor S (2013) Effect of supplementation of wheat bran on the production of shiitake, Lentinula edodes (Berk) Pegler using wheat straw and saw dust substrates. BioScan 8:817–820

    Google Scholar 

  • Sharma N, Kapoor P, Katoch A, Sharma PN, Dhancholia S (2016) Molecular characterization and optimization of parameters for cultivation of Pleurotus himalayaensis. Indian Phytopathol 69:82–86

    Google Scholar 

  • Sharma VP, Annepu SK, Gautam Y, Singh M, Kamal S (2017) Status of mushroom production in India. Mushroom Res 26:111–120

    Google Scholar 

  • Shen Q, Royse D (2001) Effects of nutrient supplements on biological efficiency, quality and crop cycle time of maitake (Grifola frondosa). Appl Microbiol Biotechnol 57:74–78

    Article  CAS  PubMed  Google Scholar 

  • Shen T, Duan C, Chen B, Li M, Ruan Y, Xu D, Shi D, Yu D, Li J (2017) Wang C. Tremella fuciformis polysaccharide suppresses hydrogen peroxide-triggered injury of human skin fibroblasts via upregulation of SIRT1 Mol Med Rep16:1340–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrikhandia SPP, Sumbali G (2019) Studies on the evaluation of some strains of Calocybe indica for cultivation in Jammu. Int J Res Pharma Sci 10:2457-2465

    Google Scholar 

  • Silva EM, Martins SF, Milagres AMF (2008) Extraction of manganese peroxidase produced by Lentinula edodes. Bioresour Technol 99:2471–2475

    Article  CAS  PubMed  Google Scholar 

  • Simsek H, Baysal E, Colak M, Toker H, Yilmaz F (2008) Yield response of mushroom (Agaricus bisporus) on wheat straw and waste tea leaves based composts using supplements of some locally available peats and their mixture with some secondary casing materials. Afr J Biotechnol 7:88–94

    CAS  Google Scholar 

  • Singh M, Singh AK, Gautam RK (2009) Screening of substrates for growth and yield of Calocybe indica. Indian Phytopathol 62:109–111

    Google Scholar 

  • Singh S, Harsh NSK, Gupta PK (2014) A novel method of economical cultivation of medicinally important mushroom, Ganoderma lucidum. Int J Pharm Sci Res 5:2033–2037

    Google Scholar 

  • Singh V, Kumar P, Kumar S, Kumar K (2017) Yield performance of collected wild milky mushroom (Calocybe species). Plant Arch 17:181–186

    Google Scholar 

  • Singh R, Yadav DB, Ravisankar N, Yadav A, Singh H (2020) Crop residue management in rice–wheat cropping system for resource conservation and environmental protection in North-Western India. Environ Dev Sustain 22:3871–3896. https://doi.org/10.1007/s10668-019-00370-z

    Article  Google Scholar 

  • Smith JE, Rowan NJ, Sullivan R (2002) Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett 24:1839–1845

    Article  CAS  Google Scholar 

  • Sohi HS (1988) Mushroom culture in India, recent research findings. Indian Phytopath 41:313–326

    Google Scholar 

  • Sokol S, Golak Siwulska I, Sobieralski K, Siwulski M, Gorka K (2016) Biology, cultivation, and medicinal functions of the mushroom Hericium erinaceus. Acta Mycol 50:1069. https://doi.org/10.5586/am.1069

    Article  Google Scholar 

  • Song B, Ye J, Sossah FL, Li C, Li D, Meng L, Xu S, Fu Y, Li Y (2018) Assessing the effects of different agro-residue as substrates on growth cycle and yield of Grifola frondosa and statistical optimization of substrate components using simplex-lattice design. AMB Expr 8:1–11

    Article  Google Scholar 

  • Song T, Shen Y, Jin Q, Feng W, Fan L, Cao G, Cai W (2021) Bacterial community diversity, lignocellulose components, and histological changes in composting using agricultural straws for Agaricus bisporus production. Peer J 9:10452. https://doi.org/10.7717/peerj.10452

    Article  Google Scholar 

  • Stamets P (2000) Growing gourmet and medicinal mushrooms, 3rd edn. Ten Speed Press, Berkeley, p 574

    Google Scholar 

  • Suharban M, Nair MC (1991) Cultivation of oyster mushroom on wooden logs of common trees. Adv Mush Sci 1:39–43

    Google Scholar 

  • Sung TJ, Wang YY, Liu KL, Chou CH, Lai PS, Hsieh CW (2020) Pholiota nameko polysaccharides promotes cell proliferation and migration and reduces ROS content in H2O2-induced L929 cells. Antioxidants 9:65. https://doi.org/10.3390/antiox9010065

    Article  CAS  PubMed Central  Google Scholar 

  • Takama F, Ninomiya S, Yoda R, Ishii H, Muraki S (1981) Parenchyma cells, chemical components of maitake mushroom (Grifola frondosa S.F. Gray) cultured artificially and their changes by storage and boiling. Mushroom Sci 11:767–779

    CAS  Google Scholar 

  • Tandon G, Sharma VP (2006) Yield performance of Calocybe indica on various substrate and supplements. Mushroom Res 15:33–35

    Google Scholar 

  • Tang XN, Bian GQ, Zhang M, Yang HB, Yu JH (2001) Studies on cultivating Flammulina velutipes with Paspalum notatum. Edible Fungi China 20:10–12

    Google Scholar 

  • Telang SM, Patil S, Baig MMV (2010) Comparative study on yield and nutritional aspect of Pleurotus eous mushroom cultivated on different substrate. Food Sci Res J 1:60–63

    Google Scholar 

  • Thakur MP, Singh HK (2014) Advances in the cultivation technology of tropical mushrooms in India. JNKVV Res J 48:120–135

    Google Scholar 

  • Thiribhuvanamala G, Krishnamoorthy AS, Shanthi K, Marimuthu T (2005) Development of suitable substrates for spawn and mushroom production of Lentinula edodes and Auricularia polytricha. Madras Agric J 92:344–348

    Google Scholar 

  • Thiribhuvanamala G, Krishnamoorthy S, Manoranjitham K, Praksasm V, Krishnan S (2012) Improved techniques to enhance the yield of paddy straw mushroom (Volvariella volvacea) for commercial cultivation. Afr J Biotechnol 11:12740–12748

    Google Scholar 

  • Toker H, Baysal E, Yigitbasi ON, Colak M, Peker H, Simsek H, Yilmaz H (2007) Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based composts using poplar leaves as activator material. Afr J Biotechnol 6:204–212

    Google Scholar 

  • Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microbial Physiol 37:1–81

    Article  CAS  Google Scholar 

  • Tripathy A (2010) Yield evaluation of paddy straw mushrooms (Volvariella spp.) on various lignocellulosic wastes. Int J Appl Agric Res 5:317–326

    Google Scholar 

  • Uhart M, Alberto EO (2007) Morphologic characterization of Agrocybe cylindracea (Basidiomycetes, Agaricales) from America, Europe and Asia. Revista Mexicana Micologia 24:9–18

    Google Scholar 

  • Upadhyay RC, Tripathi A, Singh M (2014) Lignolytic enzymes of Calocybe indica. In: Proceedings of 8th international conference on mushroom biology and mushroom products, pp 225–230

    Google Scholar 

  • Valverde ME, Perez TH, Lopez OP (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015:1–14

    Article  Google Scholar 

  • Veena SS, Pandey M (2012) Physiological and cultivation requirements of Trametes versicolor, a medicinal mushroom to diversify Indian mushroom industry. Indian J Agric Sci 82:672–675

    Google Scholar 

  • Vijaykumar G, John P, Ganesh K (2014) Selection of different substrates for the cultivation of milky mushroom (Calocybe indica P&C). Indian J Tradit Knowl 13:434–436

    Google Scholar 

  • Wang JC, Hu SH, Wang JT, Chen KS, Chia YC (2005) Hypoglycemic effect of extract of Hericium erinaceus. J Sci Food Agric 85:641–646

    Article  CAS  Google Scholar 

  • Wani BA, Bodha RH, Wani AH (2010) Nutritional and medicinal importance of mushrooms. J Med Plants Res 4:2598–2604. http://www.academicjournals.org/JMPR

    Article  Google Scholar 

  • Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Biochem Biotechnol 60:258–274

    CAS  Google Scholar 

  • Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher basidiomycetes mushroom: a modern perspective. Crit Rev Immunol 19:65–96

    CAS  PubMed  Google Scholar 

  • Wong JH, Ng TB, Chan HHL (2020) Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl Microbiol Biotechnol 104:4675–4703

    Article  CAS  PubMed  Google Scholar 

  • Wood DA, Claydon N, Dudley KJ, Stephens SK, Allan M (1988) Cellulase production in the life cycle of the cultivated mushroom Agaricus bisporus. In: Aubert JP, Beguin P, Millet J (eds) Biochemistry and genetics of cellulose degradation. Academic Press, London, pp 53–70

    Google Scholar 

  • Wu JY, Chen CH, Chang WH, Chung KT, Liu YW, Lu FJ, Chen CH (2011) Anti-cancer effects of protein extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea. Evid Based Complement Alternat Med 2011:982368

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu XLM, Mao XL, Tuli GE (2013) Medicinal fungi of China, 1st edn. Science Press, Beijing

    Google Scholar 

  • Wu YJ, Wei ZX, Zhang FM, Linhardt RJ, Sun PL, Zhang AQ (2019) Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom: a review. Int J Macro1 21:1005–1010

    Article  Google Scholar 

  • Wu JY, Siu KC, Geng P (2021) Bioactive ingredients and medicinal values of Grifola frondosa (Maitake). Foods 10:1–28. https://doi.org/10.3390/foods10010095

    Article  Google Scholar 

  • Xie C, Gong W, Yan L, Zhu Z, Hu Z, Peng Y (2017) Biodegradation of ramie stalk by Flammulina velutipes: mushroom production and substrate utilization. AMB Express 7:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin F, Geng A (2011) Utilization of horticultural waste for laccase production by Trametes versicolor under solid state fermentation. Appl Biochem Biotechnol 163:235–246

    Article  CAS  PubMed  Google Scholar 

  • Yoon SJ, Yu MA, Pyun YR, Hwang JK, Chu DC, Juneja LR, Mourao PAS (2003) The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thrombosis Res 112:151–158

    Article  CAS  Google Scholar 

  • Zadrazil F (1978) In: Chang ST, Hayes WA (eds) The biology and cultivation of edible mushrooms. Academic Press, New York, pp 521–557

    Chapter  Google Scholar 

  • Zeng S, Zhao J, Xia L (2017) Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes. Bioprocess Biosyst Eng 40:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wei J, Wang Q, Yang R, Gao X, Sang Y, Cai P, Zhang G, Chen Q (2019) Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production. Sci Rep 9:1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrikhandia, S.P.P., Devi, S., Sumbali, G. (2022). Lignocellulosic Waste Management Through Cultivation of Certain Commercially Useful and Medicinal Mushrooms: Recent Scenario. In: Arya, A., Rusevska, K. (eds) Biology, Cultivation and Applications of Mushrooms . Springer, Singapore. https://doi.org/10.1007/978-981-16-6257-7_18

Download citation

Publish with us

Policies and ethics