Skip to main content

Mushroom Biotechnology: Developing Cultivation Protocol for Four Different Mushrooms and Accessing Their Potential in Pollution Management

  • Chapter
  • First Online:
Biology, Cultivation and Applications of Mushrooms

Abstract

The proteinaceous food value of mushrooms is well recognized and it may offer effective and lasting solutions to the problems of child malnutrition and protein supplement in pregnant ladies. Advancements have been made toward understanding mushroom biology, cultivation aspects, using a variety of agro lingo-cellulosic waste, breeding high yielding varieties, medicinal implications and uses of these unique fruiting bodies in bioremediation and waste water management. Mushrooms contain antioxidants and anticancerous chemicals in significant quantities. Use of Chaga mushroom in corona virus disease control has been suggested recently in Russia. After first cultivation of rat ear fungus (Auricularia auricula) in 600 A.D., now more than 20 species are commercially cultivated and protocols to culture about 300 mushrooms is now known. New cultivation methods are developed and discussed for Shiitake mushroom (Lentinula edodes), Lenzites sterioides, Reishi mushroom (Ganoderma lucidum) and Turkey tail (Trametes versicolor).

The biological efficiency was 45% for Lentinus and 56% for Reishi in experiments conducted at Botany Department of the M.S. University of Baroda. An increase in yield was recorded when Lentinus mycelium was exposed to blue light and 5–10 ppm Veradix (IBA). The cultivation of medicinal mushroom is profitable as well fascinating since it requires a range of specific environmental conditions such as humidity, temperature, etc. The efforts have been made to eliminate the use of polythene bags by using earthen pots in case of oyster mushroom. A range of substrates have been used to increase the yield and manage agro-waste produced in large quantity in different countries. Cellulose and hemicellulose served as better sources of mushroom production, whereas, in lignin containing substrates the growth was slower. Apart from using substrates, dilute acid soaking of the leaves produced better growth of oyster. Light and temperature levels are also critical for example Lentinus cultivation required 15–20 °C temp, while it was 20–25 °C in certain other species. For G. lucidum the temperature required was 30 °C. Exposure to light acts as a shock to switch over the mycelium from vegetative to reproductive stage. The efforts are being made to increase number of fruiting bodies by the use of Ni and Sn salts. This chapter deals with spawn production and the advances in cultivation of four medicinal mushrooms made in different parts of the world. Mushrooms breeding and strain improvement has resulted into many new and high yielding strains. Production of oyster mushroom is done in almost all parts of the country, extensive fungal surveys are needed for developing better conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–102

    Google Scholar 

  • Adenipekun CO, Lawal R (2012) Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev 7(3):62–68. http://www.academicjournals.org/journal/BMBR/article-abstract/2A84D4E12478

    CAS  Google Scholar 

  • Amicucci A, Zambonelli A, Giomaro G, Potenza L, Stocchi V (1998) Identification of ectomycorrhizal fungi of the genus Tuber by species-specific ITS primers. Mol Ecol 7:273–277

    Article  CAS  Google Scholar 

  • Antonelli A, Fry C, Smith RJ, Simmonds MSJ et al (2020) State of the world’s plants and fungi 2020. Royal Botanic Gardens, Kew. https://doi.org/10.34885/172

  • Arya C (2007) Cultivation of Reishi mushroom(Ganoderma lucidum (Leyes) Karst). In: Daniel M, Arya A, Raole VM (eds) Herbal technology. Scientific Pub., Jodhpur, pp 69–76

    Google Scholar 

  • Arya C, Arya A (2003) A new technique to grow oyster mushroom. J MS Univ Baroda 48:67–70

    Google Scholar 

  • Arya A, Albert S, Nagadesi PK (2008) New and interesting records of basidiomycetous fungi from Ratanmahal wildlife sanctuary, Gujarat, India. J Mycol Plant Pathol 38(2):221–226

    Google Scholar 

  • Arya A, Arya C, Dhar P (2020) Use of fast growing white wood rotting fungus Ganoderma lucidum(L.) Karst. for cultural and bioremediation studies. In: Environment at crossroads by A. Arya Scientific Pub. India, pp 1–9

    Google Scholar 

  • Baldrian P (2006) Fungal laccases occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  • Bellini MF, Giacomini NL, Eira AF, Ribeiro LR, Mantovani MS (2003) Anticlastogenic effect of aqueous extraxts of Agaricus blazei on CHO-k1 cells, studying different developmental phases of the mushroom. Toxicol in Vitro 17:465–469

    Article  CAS  PubMed  Google Scholar 

  • Bhandal MS, Mehta KB (1989) Evaluation and improvement of strains of Agaricus bisporus. Mushroom Sci 12(1):25

    Google Scholar 

  • Bhatt M, Mistry P, Joshi I, Ram H et al (2018) Molecular survey of basidiomycetes and divergence time estimation: an Indian perspective. PLoS One 13(5):e0197306

    Article  PubMed  PubMed Central  Google Scholar 

  • Bisen PS, Baghel RK, Sanodiya BS, Thakur GS, Prasad GBKS (2010) Lentinus edodes: a macrofungus with pharmacological activities. Curr Med Chem 17(22):2419–2430

    Article  CAS  PubMed  Google Scholar 

  • Boa E (2004) Wild edible fungi a global overview of their use and importance to people. FAO, Rome, 148 pp

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207. https://doi.org/10.1006/eesa.1999.1860

    Article  CAS  PubMed  Google Scholar 

  • Callac P, Billette C, Imbemon M, Kerrigan RW (1993) Morphological, genetic and infertility analysis reveal a novel, tetrasporic variety of Agaricus bisporus from the Sonaran desert of California. Mycologia 85:835

    Article  Google Scholar 

  • Chang ST (ed) (1993) Mushroom biology and mushroom products. The Chinese University Press, Hong Kong, p 267

    Google Scholar 

  • Chang ST (1999) Global impact of edible and medicinal mushrooms on human welfare in the 21st century: nongreen revolution. Int J Med Mushrooms 1:1–7. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.10

    Article  Google Scholar 

  • Chang ST (2007) The world mushroom industry: trends and technological development. Int J Med Mushrooms 297:314. https://doi.org/10.1615/IntJMedMushr.v8.i4.10

    Article  Google Scholar 

  • Chang ST, Bushnell JA (1996) Mushroom nutraceuticals. World J Microbiol Biotechnol 12:473–476

    Article  CAS  PubMed  Google Scholar 

  • Chang ST, Miles PG (1992) Mushroom biology—a new discipline. Mycologist 6:64–65

    Article  Google Scholar 

  • Chang ST, Li SX, Maher MJ (1991) Genetical studies on the sexuality pattern of Volvariella volvacea. Mushroom Sci XIII:119

    Google Scholar 

  • Chen AW (2001) Cultivation of Lentinula edodes on synthetic logs. News Letter Mushroom Growers Association. https://www.researchgate.net/publication/242117061

  • Chiu SW, Moore D (1999) Segregation of genotypically diverse progeny from self-fertilized haploids of the Chinese straw mushroom, Volvariella volvacea. Mycol Res 103(10):1335–1345

    Article  Google Scholar 

  • Colpaert J, Wevers J, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68(1):17–24, Springer Nature (since 2011)/EDP Science (until 2010). https://doi.org/10.1007/s13595-010-0003-9. hal-00930658

  • Czarnecki R, Grzybek J (1995) Antiinflammatory and vasoprotective activities of polysaccharides isolated from fruit bodies of higher fungi. 1. Polysaccharides from Trametes gibbosa (Pers, Fr) Fr (Polyporaceae). Phytother Res 9(2):123–127

    Article  CAS  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals – an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Fekadu A (2014) Cultivation of Pleurotus ostreatus on Grevillea robusts leaves at Dilla University, Ethiopia. J Yeast Fungal Res 5(6):74–83

    Article  Google Scholar 

  • Fekadu A (2015) Cultivation of shitake mushroom (lentinus edodes) on coffee husk at Dilla University, Ethiopia. J Food Nutrition Sci 3(2):63–70

    Google Scholar 

  • Finney KN, Ryu C, Sharifi VN, Swithenbank J (2009) The reuse of spent mushroom compost and coal tailings for energy recovery: comparison of thermal treatment technologies. Bioresour Technol 100:310–315

    Article  CAS  PubMed  Google Scholar 

  • Fritsche G (1991) A personal view on mushroom breeding from 1957-1991. In: Genetics and breeding of Agaricus Pudoc Wageningen, p 3

    Google Scholar 

  • García MA, Alonso J, Melgar MJ (2005) Agaricus macrosporus as a potential bioremediation agent for substrates contaminated with heavy metals. J Chem Technol Biotechnol 80:325–330. https://doi.org/10.1002/jctb.1203

    Article  CAS  Google Scholar 

  • Gargano M, Griensven VL, Isikhuemhen O, Lindequist U et al (2017) Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst Int J Dealing Aspects Plant Biol 151:548–565. https://doi.org/10.1080/11263504.2017.1301590

    Article  Google Scholar 

  • Getha K, Hatsu M, Wong HJ, Lee SS (2009) Submerged cultivation of basidiomycete fungi associated with root diseases for production of valuable bioactive metabolites. J Trop For Sci 21:1–7

    Google Scholar 

  • Grimm D, Wosten AB (2018) Mushroom cultivation in circular economy. Appl Microbiol Biotechnol 102:7795–7803. https://doi.org/10.1007/s00253-018-9226-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidot A, Lumini E, Debaud JC, Marmeisse R (1999) The nuclear ribosomal DNA intergenic spacer as a target sequence to study intraspecific diversity of the ectomycorrhizal basidiomycete Hebeloma cylindrosporum directly on Pinus root systems. Appl Environ Microbiol 65(3):903–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanif MA, Bhatti N (2013) Remediation of heavy metals using easily cultivable, fast growing, and highly accumulating white rot fungi from hazardous aqueous streams. Desalin Water Treat 53(1):238–248. https://doi.org/10.1080/19443994.2013.848413

    Article  CAS  Google Scholar 

  • Hobbs CH (1995) Medicinal mushrooms: an exploration of tradition, healing and culture, 2nd edn. Botanica Press, Inc, Santa Cruz, p 252. http://en.wikipedia.org/wiki/medicinal_mushrooms

    Google Scholar 

  • Huang C, Huang CP (1986) Application of Aspergillus oryzae and Rhizopus oryzae for Cu (II) removal. Water Res 30:1985–1990

    Article  Google Scholar 

  • International Fund for Agricultural Development (IFAD) (2001) Rural poverty report 2001 Rome international fund for agricultural development. http://www.fad.org/poverty/Index.htm

  • International Fund for Agricultural Development (IFAD) (2011) Rural poverty report 2011 Rome international fund for agricultural development. http://sdg.iisd.org/news/ifad-releases-rural-poverty-report-2011/

  • Iracabal B, Labarere J (1994) Restriction site and length polymorphism of the rDNA unit in the cultivated basidiomycete Pleurotus cornucopiae. TAG Theor Appl Genet 88(6):824–830

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa NK, Kasuya MCM, Vanetti MCD (2001) Antibacterial activity of Lentinula edodes grown in liquid medium. Braz J Microbiol 32:206–210

    Article  Google Scholar 

  • James TY, Moncalvo JM, Li S, Vilgalys R (2001) Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom Schizophyllum commune. Genetics 157(1):149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaykumar M, Manoharan S (2014) Study of intercultivating paddy straw mushroom in maize cropping system. Mushroom Res 23(1):115–117

    Google Scholar 

  • Jones MP, Huynh T, Dekiwadia C, Daver F, John S (2017) Mycelium composites: a review of engineering characteristics and growth kinetics. J Bionanosci 11:241–257

    Article  CAS  Google Scholar 

  • Kalra R, Phutela RP (1991) Strain selection and development in Volvariella. Adv Mushroom Sci 1:145–148

    Google Scholar 

  • Karen I, Fernández-Alejandre NF et al (2016) Diffusional and transcriptional mechanisms involved in laccases production by Pleurotus ostreatus CP50. J Biotechnol 223:42–49. https://doi.org/10.1016/j.jbiotec.2016.02.029

    Article  CAS  Google Scholar 

  • Kaul TN (2002) Biology and conservation of mushrooms. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi

    Google Scholar 

  • Kavousi HR, Farsi M, Shahriari F (2008) Comparison of random amplified polymorphic DNA markers and morphological characters in identification of homokaryon isolates of white button mushroom (Agaricus bisporus). Pak J Biol Sci 11(14):1771–1778

    Article  CAS  PubMed  Google Scholar 

  • Kawagishi H, Inagaki R, Kanao T, Mizuno T, Shimura K, Ito H, Hagiwara T, Nakamura T (1989) Fractionation and antitumor activity of the water-insoluble residue of Agaricus blazei fruiting bodies. Carbohydr Res 186:267–274

    Article  CAS  PubMed  Google Scholar 

  • Kerrigan RW (2004) Trait diversity in wild Agaricus bisporus. In: Romaine CP, Keil CB, Rinker DL, Royse DJ (eds) Mushroom sciences XVI. Pennsylvania State University, University Park, pp 31–38

    Google Scholar 

  • Kimura Y, Taniguchi M, Baba K (2002) Antitumor and antimetastatic effects on liver of triterpenoids fractions of Ganoderma lucidum: mechanism of action and isolation of an active substance. Anticancer Res 22:3309–3318

    CAS  PubMed  Google Scholar 

  • Lakshmi B, Ajith TA, Sheena M, Nidhi G, Janardhanan KK (2003) Antiperoxidative and anti-inflammatory and ant mutagenic activities of ethanol extract of the mycelium of Ganoderma lucidum occurring in South India. Teratog Carcinog Mutagen 1:85–97

    Article  PubMed  Google Scholar 

  • Lamar RT, White RB (2001) Mycoremediation: commercial status and recent developments. In: Magar VS et al (eds) Proc. sixth int. symp. on in situ and on-site bioremediation, San Diego, CA, vol 6, pp 263–278

    Google Scholar 

  • Leiva FJ, Saenz-diez JC, Martinez E, Jimenez E, Blano J (2015) environmental impact of Agaricus bisporus cultivation process. Eur J Agron 71:141–148

    Article  Google Scholar 

  • Lelley JJ, JanBen A (1993) Productivity improvement of oyster mushroom substrate with a controlled release of nutrient. Mushroom News 41:6–13

    Google Scholar 

  • Lindequist U, Niedermeyer TH, Jülich WD (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2005(2):285–299

    Article  Google Scholar 

  • Loftus M (1995) Breeding new strains of mushrooms. Mushroom News 43:6

    Google Scholar 

  • Martinez JCR (2020) Soma and the muiscas: the Colombian mushroom cults. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341106516

  • Miles PG, Chang ST (1997) Mushroom biology: concise basics and current developments. World Scientific, Singapore, p 194

    Book  Google Scholar 

  • Mlinarič A, Kac J, Pohleven F (2005) Screening of selected wood-damaging fungi for the HIV-1 reverse transcriptase inhibitors. Acta Pharma 55:69–79

    Google Scholar 

  • Moncalvo JM (2000) Systematics of Ganoderma. In: Ganoderma diseases of perennial crops. CAB International, Wallingford, pp 23–45

    Chapter  Google Scholar 

  • Muraleedharan TR, Iyengar L, Venkobachar C (1995) Screening of tropical wood rotting mushrooms for copper biosorption. Appl Environ Microbiol 61:3507–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasehi M, Torbatinezad NM, Zerehdaran S (2017) Effect of solid-state fermentation by oyster mushroom (Pleurotus florida) on nutritive value of some agro by products. J Appl Anim Res 45:221–226

    Article  CAS  Google Scholar 

  • Nisha (2011) Conversion of waste into edible protein, B.Sc. Dissertation. The MS University of Baroda, p 101

    Google Scholar 

  • Oei P (1996) Mushroom cultivation (with emphasis on techniques for developing countries). Tool Publications, Leiden. pp 126–137, 93–204

    Google Scholar 

  • Ohtsuka S, Ueno S, Yoshikumi C, Hirose F, Ohmura Y, Wada T, Fujii T, Takahashi E (1973) Polysaccharides having an anticarcinogenic effect and a method of producing them from species of Basidiomycetes. UK Patent 1331513

    Google Scholar 

  • Oliveira AL, Eler GJ, Bracht A, Peralta RM (2010) Purinergic effects of a hydroalcoholic Agaricus brasiliensis (A. blazei) extract on liver functions. J Agric Food Chem 58:7202–7210

    Article  PubMed  Google Scholar 

  • Phan CW, Sabaratnam V (2012) Potential uses of spent mushroom sub-state and its associated lignocellulosic enzymes. Appl Micronil Biotechnol 96:863–873

    Article  CAS  Google Scholar 

  • Ramesh C, Pattar MG (2010) Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharm Res 2(2):107–112. http://www.phcogres.com, on Friday, March 19, 2021, IP: 117.208.32.57

    CAS  Google Scholar 

  • Ren G, Liu XY, Zhu HK, Yang SZ, Fu CX (2006) Evaluation of cytotoxic activities of some medicinal polypore fungi from China. Fitoterapia 77(5):408–410

    Article  CAS  PubMed  Google Scholar 

  • Royse D (1997) Cultivation of shiitake on natural and synthetic logs. College of Agricultural Sciences, Cooperative Extension, University Park, 10 pp

    Google Scholar 

  • Royse DJ, Sanchez-vazquez JE (2000) Influence of wood chip particle size used in substrate on biological efficiency and post-soak log weights of shiitake. In: Griensven V (ed) Science and cultivation of edible fungi, pp 367–373

    Google Scholar 

  • Royse DJ, Baars J, Qi T (2017) Current overview of mushroom production in the world. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications, 1st edn. Wiley, pp 5–13

    Chapter  Google Scholar 

  • Saini MK, Kaur H, Malik NA (2018) The genus Agaricus (Agaricaceae, Agaricales) from India—a check list. Kavaka 51:49–58

    Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Stamets P (2000) Growing Gourmet and medicinal mushrooms, 3rd edn. Ten Speed Press, Berkeley. 574 pp

    Google Scholar 

  • Suseem SR, Saral MA (2014) Bio sorption of heavy metals using mushroom Pleurotus eous. J Chem Pharm Res 6(7):2163–2168

    CAS  Google Scholar 

  • Tambekar DH, Sonar TP, Khodje MV, Khante BS (2006) The novel antibacterial from two edible mushrooms Agaricus bisporus and Pleurotus sajopr caju. Int J Pharm 2:584–587

    Article  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Uzun I (2004) Use of spent mushroom compost in sustainable fruit production. J Fruit Ornam Plant Res 12:157–165

    Google Scholar 

  • Vannucci L, Krizan J, Sima P, Stakheev D, Caja F, Rajsilova L, Horak V, Saieh M (2013) Immunostimulatory properties and antitumor activities of glucans. Int J Oncol 2013(43):357–364

    Article  Google Scholar 

  • Wasser SP (2002) Medicinal mushroom as source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274

    Article  CAS  PubMed  Google Scholar 

  • Wasson RG (1980) The wondrous mushroom: mycolatry in Mesoamerica. McGraw-Hill, New York. (Reprint by City Lights, 2012)

    Google Scholar 

  • Wang XM, Zhang JI, Li T, Wang YZ, Liu HG (2015) Content and bioaccumulation of nine mineral elements in ten mushroom species of the genus boletus. J Anal Methods Chem. Hindawi Publishing Corporation Article ID 165412, 7 p. https://doi.org/10.1155/2015/165412

  • Yadav MC, Sharma SK, Singh SK, Mahapatra T (2006) Molecular differentiation of sexually incompatible strains of agaricus bitorquis using RAPD and AFLP genome – current status and implicationa for genetic improvement. In: Rai RD, Singh SK, Yadav MC, Tewari RP (eds) Mushroom biology and biotechnology. Mushroom Soc. of India Pub., Solan

    Google Scholar 

  • Yadav MC, Singh SK, Rai RD (2007) Mushroom genome – current status and implicationa for genetic improvement. In: Rai RD, Singh SK, Yadav MC, Tewari RP (eds) Mushroom biology and biotechnology. Mushroom Soc. of India Pub., Solan, pp 41–61

    Google Scholar 

  • Yao YJ, Li Y, Du Z, Wang K, Wang XC, Kirk PM, Spooner BM (2020) On the typification of Ganoderma sichuanense (Agaricomycetes)-the widely cultivated Lingzhi medicinal mushroom. Int J Med Mushrooms 22(1):45–54. https://doi.org/10.1615/IntJMedMushrooms.2019033189

    Article  PubMed  Google Scholar 

  • Yassin M, Wasser SP, Mahajna J (2008) Substances from the medicinal mushroom Daedalea gibbosa inhibit kinase activity of native and T315I mutated Bcr-Abl. Int J Oncol 32(6):1197–1204

    PubMed  Google Scholar 

  • You YH, Lin ZB (2002) Protective effects of Ganoderma lucidum polysaccharides peptide on injury of macrophages induced by reactive oxygen species. Acta Pharmacol Sin 23:789–791

    Google Scholar 

  • Zhang GL, Wang YH, Ni W, Teng HL, Lin ZB (2002) Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World J Gastroenterol 8:728–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JX, Huang CY, Ng TB, Wang HX (2006) Genetic polymorphism of ferula mushroom growing on Ferula sinkiangensis. Appl Microbiol Biotechnol 71(3):304–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank UGC for funding the program of UGC-DRS II to the Botany Dept. M.S. University of Baroda, India and providing financial assistance to Prof. A. Arya for undertaking the studies.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deshpande, A.G., Arya, A. (2022). Mushroom Biotechnology: Developing Cultivation Protocol for Four Different Mushrooms and Accessing Their Potential in Pollution Management. In: Arya, A., Rusevska, K. (eds) Biology, Cultivation and Applications of Mushrooms . Springer, Singapore. https://doi.org/10.1007/978-981-16-6257-7_16

Download citation

Publish with us

Policies and ethics