Skip to main content

Timing of the Major Metabolic Switches in Immune Cell Activation and Differentiation During Cancer Development

  • Chapter
  • First Online:
Immuno-Oncology Crosstalk and Metabolism

Abstract

The immune system is divided into two parts: innate and adaptive. Immune cells derived from myeloid and lymphoid progenitor cells play a critical role in combating infection, cell stress, cancer, and autoimmune responses by mounting appropriate and robust immune responses. According to the evidence, an immune cell’s nutrient uptake and utilization are critical for governing their proliferation and differentiation and influencing metabolic pathways that lead to immune cell fate. Cancer development is characterized by altered metabolism. Metabolism and immune system are inextricably linked, and multi level interactions between them shape immune responses. This chapter deliberates potential metabolic switches in immune cells which modulate the activation, differentiation, and response to fight against a tumor. We believe that it is possible to design new treatments for cancer therapy to steer a specific immune cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A2b:

Adenosine receptor

ACC1:

Acetyl coenzyme A carboxylase

AKT:

AKT serine threonine kinase

AMP:

Adenosine monophosphate

AMPK:

5′-Activated protein kinase

APCs:

Antigen-presenting cells

Arg-1:

Arginase-1

COX10:

Cytochrome C oxidase assembly factor heme A:farnesyltransferase COX10

COX2:

Cyclooxygenase 2

CTLs:

Cytotoxic T lymphocytes

DAMP:

Damage-associated molecular pattern

DCs:

Dendritic cells

ERK:

Extracellular signal-regulated kinases

ETC:

Electron transport chain

FADH2:

Flavin adenine dinucleotide 2

FAO:

Fatty acid oxidation

FOXP3:

Forkhead box P3

G6P:

Glucose-6-phosphate

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GCN2:

General control nonderepressible 2

GLUT1:

Glucose transporter 1

HIF1α:

Hypoxia-inducible factor 1

IC:

Immune complexes

IDO:

Indoleamine 2,3-dioxygenase

IFN-γ:

Interferon gamma

IL-1:

Interleukin-1

IL-10:

Interleukin-10

IL-12:

Interleukin-12

IL-13:

Interleukin-13

IL-17:

Interleukin-17

IL-4:

Interleukin-4

IL-6:

Interleukin-6

IL-7:

Interleukin-7

iNOS:

Inducible nitric oxide synthase

JAK:

Janus kinase

LDHA:

Lactate dehydrogenase A

LPS:

Liposaccharide

M1/M2:

Macrophages

MDSCs:

Myeloid-derived suppressor cells

MHC-I/-II:

Major histocompatibility complex I/II

MMPs:

Metalloproteases

mROS:

Mitochondrial reactive oxygen species

MSR1:

Macrophage scavenger receptor 1

mTOR:

Mammalian target of rapamycin

mTORC1:

mTOR complex 1

mTORC2:

mTOR complex 2

MΦs:

Macrophages

NADH:

Nicotinamide adenine dinucleotide

NETs:

Neutrophil extracellular traps

NFAT:

Nuclear factor of activated T cells

NF-κB:

Nuclear factor kappa B

NK:

Natural killer

NOS2:

Nitric oxide synthase 2

OXPHOS:

Oxidative phosphorylation

PAMPs:

Pathogen-associated molecular pattern

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death-ligand 1

PDPK1:

Phosphoinositide-dependent protein

PEP:

Phosphoenolpyruvate

PEPCK1:

Phosphoenolpyruvate carboxykinase 1

PGC-1β:

Proliferator-activated receptor-γ coactivator-1 beta

PI3K:

Phosphoinositide 3-kinase

PKM2:

Pyruvate kinase M1/2

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

PPP:

Pentose phosphate shunt/pathway

PTEN:

Phosphatase and tensin homolog

RNS:

Reactive nitrogen species

RORγ:

RAR-related orphan receptor gamma

ROS:

Reactive oxygen species

S-2HG:

S-2-hydroxyglutarate

SHTM2:

Serine hydroxymethyltransferase 2

SIRT:

Sirtuin

SREBP:

Sterol regulatory element-binding protein

STAT:

Signal transducer and activator of transcription

STAT6:

Signal transducer and activator of transcription 6

TADCs:

CCR7, tumor-associated DCs

TAG:

Triacylglycerol

TAMs:

Tumor-associated macrophages

TANs:

Tumor-associated neutrophils

TCA:

Tricarboxylic acid

TCR:

T-cell receptor

TGF-β:

Transforming growth factor beta

TME:

Tumor microenvironment

TNFα:

Tumor necrosis factor alpha

Tregs:

T regulatory cells

TSC-1:

Tuberous sclerosis 1

VEGF:

Vascular endothelial growth factor

VHL:

Von Hippel-Lindau

References

  1. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20

    Article  CAS  PubMed  Google Scholar 

  2. Wegiel B, Vuerich M, Daneshmandi S, Seth P (2018) Metabolic switch in the tumor microenvironment determines immune responses to anti-cancer therapy. Front Oncol 8:284

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  4. Viale A, Draetta GF (2016) Metabolic features of cancer treatment resistance. In: Metabolism in cancer. Springer, 135–56

    Google Scholar 

  5. Herbel C, Patsoukis N, Bardhan K, Seth P, Weaver JD, Boussiotis VA (2016) Clinical significance of T cell metabolic reprogramming in cancer. Clin Transl Med 5(1):1–23

    Article  Google Scholar 

  6. Biswas SK (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43(3):435–449

    Article  CAS  PubMed  Google Scholar 

  7. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA et al (2014) Metabolic reprogramming of macrophages glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 289(11):7884–7896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pearce EJ, Everts B (2015) Dendritic cell metabolism. Nat Rev Immunol 15(1):18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ho P-C, Liu P-S (2016) Metabolic communication in tumors: a new layer of immunoregulation for immune evasion. J Immunother Cancer 4:4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F et al (2020) Immunity, hypoxia, and metabolism—the Ménage à trois of cancer: implications for immunotherapy. Physiol Rev 100(1):1–102

    Article  CAS  PubMed  Google Scholar 

  13. Swain SL, McKinstry KK, Strutt TM (2012) Expanding roles for CD4+ T cells in immunity to viruses. Nat Rev Immunol 12(2):136–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bailey SR, Nelson MH, Himes RA, Li Z, Mehrotra S, Paulos CM (2014) Th17 cells in cancer: the ultimate identity crisis. Front Immunol 5:276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sullivan D, Van der Windt G, Huang S, Jonathan D, Chang C, Buck M (2014) Memory CD8+ T cells use cell intrinsic lipolysis. Immunity 41:75–88

    Article  CAS  Google Scholar 

  17. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E et al (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36(1):68–78

    Article  PubMed  CAS  Google Scholar 

  18. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Plas DR, Rathmell JC, Thompson CB (2002) Homeostatic control of lymphocyte survival: potential origins and implications. Nat Immunol 3(6):515–521

    Article  CAS  PubMed  Google Scholar 

  20. Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI et al (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A 98(15):8732–8737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rathmell JC, Heiden MGV, Harris MH, Frauwirth KA, Thompson CB (2000) In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 6(3):683–692

    Article  CAS  PubMed  Google Scholar 

  22. Yang K, Neale G, Green DR, He W, Chi H (2011) The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 12(9):888–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siska PJ, Rathmell JC (2015) T cell metabolic fitness in antitumor immunity. Trends Immunol 36(4):257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maciolek JA, Pasternak JA, Wilson HL (2014) Metabolism of activated T lymphocytes. Curr Opin Immunol 27:60–74

    Article  CAS  PubMed  Google Scholar 

  25. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186(6):3299–3303

    Article  CAS  PubMed  Google Scholar 

  26. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA et al (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38(2):225–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Windt GJ, O’Sullivan D, Everts B, Huang SC, Buck MD, Curtis JD et al (2013) CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci U S A 110(35):14336–14341

    Article  PubMed  PubMed Central  Google Scholar 

  28. Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J et al (2012) PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med 209(13):2441–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Article  PubMed  CAS  Google Scholar 

  30. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D et al (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20(1):61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jacobs SR, Herman CE, MacIver NJ, Wofford JA, Wieman HL, Hammen JJ et al (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180(7):4476–4486

    Article  CAS  PubMed  Google Scholar 

  32. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M et al (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334(6060):1278–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14(5):500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153(6):1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tan H, Yang K, Li Y, Shaw TI, Wang Y, Blanco DB et al (2017) Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46(3):488–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A et al (2010) Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 185(2):1037–1044

    Article  CAS  PubMed  Google Scholar 

  37. Jones RG, Thompson CB (2007) Revving the engine: signal transduction fuels T cell activation. Immunity 27(2):173–178

    Article  CAS  PubMed  Google Scholar 

  38. O’Sullivan D, Pearce EL (2015) Targeting T cell metabolism for therapy. Trends Immunol 36(2):71–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lee J, Walsh MC, Hoehn KL, James DE, Wherry EJ, Choi Y (2014) Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol 192(7):3190–3199

    Article  CAS  PubMed  Google Scholar 

  40. Gaber T, Strehl C, Sawitzki B, Hoff P, Buttgereit F (2015) Cellular energy metabolism in T-lymphocytes. Int Rev Immunol 34(1):34–49

    Article  CAS  PubMed  Google Scholar 

  41. Altman BJ, Dang CV (2012) Normal and cancer cell metabolism: lymphocytes and lymphoma. FEBS J 279(15):2598–2609

    Article  CAS  PubMed  Google Scholar 

  42. Michalek RD, Gerriets VA, Nichols AG, Inoue M, Kazmin D, Chang CY et al (2011) Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci U S A 108(45):18348–18353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Powell JD, Pollizzi KN, Heikamp EB, Horton MR (2012) Regulation of immune responses by mTOR. Annu Rev Immunol 30:39–68

    Article  CAS  PubMed  Google Scholar 

  44. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777

    Article  CAS  PubMed  Google Scholar 

  45. Powell JD, Delgoffe GM (2010) The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33(3):301–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tandon P, Gallo CA, Khatri S, Barger JF, Yepiskoposyan H, Plas DR (2011) Requirement for ribosomal protein S6 kinase 1 to mediate glycolysis and apoptosis resistance induced by Pten deficiency. Proc Natl Acad Sci U S A 108(6):2361–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. MacIver NJ, Blagih J, Saucillo DC, Tonelli L, Griss T, Rathmell JC et al (2011) The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol 187(8):4187–4198

    Article  CAS  PubMed  Google Scholar 

  49. Rolf J, Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA (2013) AMPKα1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol 43(4):889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, Yurchenko E et al (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42(1):41–54

    Article  CAS  PubMed  Google Scholar 

  51. Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E et al (2013) Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 14(11):1173–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tyrakis PA, Palazon A, Macias D, Lee KL, Phan AT, Veliça P et al (2016) S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate. Nature 540(7632):236–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Delgoffe GM, Powell JD (2009) mTOR: taking cues from the immune microenvironment. Immunology 127(4):459–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kopf H, de la Rosa GM, Howard OM, Chen X (2007) Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int Immunopharmacol 7(13):1819–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y et al (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146(5):772–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR et al (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208(7):1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR et al (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12(4):295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N et al (2010) Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32(6):743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO (2016) Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354(6311):481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R et al (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162(6):1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ron-Harel N, Santos D, Ghergurovich JM, Sage PT, Reddy A, Lovitch SB et al (2016) Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab 24(1):104–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoshida K, Maekawa T, Zhu Y, Renard-Guillet C, Chatton B, Inoue K et al (2015) The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat Immunol 16(10):1034–1043

    Article  CAS  PubMed  Google Scholar 

  63. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238

    Article  CAS  PubMed  Google Scholar 

  64. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499(7459):485–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Newton R, Priyadharshini B, Turka LA (2016) Immunometabolism of regulatory T cells. Nat Immunol 17(6):618–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sharma MD, Shinde R, McGaha TL, Huang L, Holmgaard RB, Wolchok JD et al (2015) The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci Adv 1(10):e1500845

    Article  PubMed  PubMed Central  Google Scholar 

  67. Blagih J, Coulombe F, Vincent Emma E, Dupuy F, Galicia-Vázquez G, Yurchenko E et al (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42(1):41–54

    Article  CAS  PubMed  Google Scholar 

  68. Ben-Shoshan J, Maysel-Auslender S, Mor A, Keren G, George J (2008) Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1α. Eur J Immunol 38(9):2412–2418

    Article  CAS  PubMed  Google Scholar 

  69. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Palucka AK, Coussens LM (2016) The basis of Oncoimmunology. Cell 164(6):1233–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896

    Article  CAS  PubMed  Google Scholar 

  73. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322

    Article  PubMed  Google Scholar 

  74. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631

    Article  CAS  PubMed  Google Scholar 

  75. Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727

    Article  CAS  PubMed  Google Scholar 

  77. Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267(2):204–215

    Article  CAS  PubMed  Google Scholar 

  78. Rodríguez-Prados J-C, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P et al (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185(1):605–614

    Article  PubMed  CAS  Google Scholar 

  79. Tannahill G, Curtis A, Adamik J, Palsson-McDermott E, McGettrick A, Goel G et al (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496(7444):238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR et al (2006) Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab 4(1):13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheng S-C, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V et al (2014) mTOR-and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345(6204):1250684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C et al (2010) Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol 184(3):1200–1209

    Article  CAS  PubMed  Google Scholar 

  83. Carmona-Fontaine C, Deforet M, Akkari L, Thompson CB, Joyce JA, Xavier JB (2017) Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A 114(11):2934–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y et al (2014) Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res 74(1):24–30

    Article  CAS  PubMed  Google Scholar 

  85. Brahimi-Horn MC, Chiche J, Pouysségur J (2007) Hypoxia and cancer. J Mol Med 85(12):1301–1307

    Article  PubMed  Google Scholar 

  86. Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Seth P, Csizmadia E, Hedblom A, Vuerich M, Xie H, Li M et al (2017) Deletion of lactate dehydrogenase-A in myeloid cells triggers antitumor immunity. Cancer Res 77(13):3632–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482

    Article  CAS  PubMed  Google Scholar 

  89. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE et al (2015) Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 21(1):65–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Palsson-McDermott EM, Dyck L, Zasłona Z, Menon D, McGettrick AF, Mills KH et al (2017) Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 8:1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Newsholme P, Curi R, Gordon S, Newsholme EA (1986) Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239(1):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu P-S, Wang H, Li X, Chao T, Teav T, Christen S et al (2017) α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18(9):985–994

    Article  CAS  PubMed  Google Scholar 

  93. Dennis EA, Deems RA, Harkewicz R, Quehenberger O, Brown HA, Milne SB et al (2010) A mouse macrophage lipidome. J Biol Chem 285(51):39976–39985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Odegaard JI, Chawla A (2011) Alternative macrophage activation and metabolism. Annu Rev Pathol 6:275–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang SC-C, Everts B, Ivanova Y, O'sullivan D, Nascimento M, Smith AM et al (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15(9):846–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cairo G, Recalcati S, Mantovani A, Locati M (2011) Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol 32(6):241–247

    Article  CAS  PubMed  Google Scholar 

  97. Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M et al (2010) Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 40(3):824–835

    Article  CAS  PubMed  Google Scholar 

  98. Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19(2):108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77

    Article  CAS  PubMed  Google Scholar 

  101. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189(9):1363–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311

    Article  CAS  PubMed  Google Scholar 

  103. Liu G, Bi Y, Shen B, Yang H, Zhang Y, Wang X et al (2014) SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1α-dependent glycolysis. Cancer Res 74(3):727–737

    Article  CAS  PubMed  Google Scholar 

  104. Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K et al (2015) Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 3(11):1236–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Apetoh L, Locher C, Ghiringhelli F, Kroemer G, Zitvogel L, editors (2011) Harnessing dendritic cells in cancer. Seminars in immunology. Elsevier

    Google Scholar 

  106. Bullock TNJ, Dong H (2014) Metabolic influences that regulate dendritic cell function in tumors. Front Immunol 5:24

    PubMed  PubMed Central  Google Scholar 

  107. Malinarich F, Duan K, Hamid RA, Bijin A, Lin WX, Poidinger M et al (2015) High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells. J Immunol 194(11):5174–5186

    Article  CAS  PubMed  Google Scholar 

  108. Ravindran R, Khan N, Nakaya HI, Li S, Loebbermann J, Maddur MS et al (2014) Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science 343(6168):313–317

    Article  CAS  PubMed  Google Scholar 

  109. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ et al (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115(23):4742–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B, Gerlach RG et al (2008) Hypoxia and hypoxia-inducible factor-1α modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 180(7):4697–4705

    Article  CAS  PubMed  Google Scholar 

  111. Mancino A, Schioppa T, Larghi P, Pasqualini F, Nebuloni M, Chen I-H et al (2008) Divergent effects of hypoxia on dendritic cell functions. Blood 112(9):3723–3734

    Article  CAS  PubMed  Google Scholar 

  112. Yang M, Ma C, Liu S, Shao Q, Gao W, Song B et al (2010) HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol 88(2):165–171

    Article  CAS  PubMed  Google Scholar 

  113. Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY et al (2008) Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112(5):1822–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD (2009) Human dendritic cells produce TGF-β1 under the influence of lung carcinoma cells and prime the differentiation of CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup> regulatory T cells. J Immunol 182(5):2795–2807

    Article  CAS  PubMed  Google Scholar 

  115. Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL (2015) Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 194(7):2985–2991

    Article  PubMed  CAS  Google Scholar 

  116. Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R et al (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107(5):2013–2021

    Article  CAS  PubMed  Google Scholar 

  117. Hong Y, Manoharan I, Suryawanshi A, Majumdar T, Angus-Hill ML, Koni PA et al (2015) β-catenin promotes regulatory T-cell responses in tumors by inducing vitamin A metabolism in dendritic cells. Cancer Res 75(4):656–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Everts B, Amiel E, Huang SC-C, Smith AM, Chang C-H, Lam WY et al (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol 15(4):323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA et al (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16(8):880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cubillos-Ruiz Juan R, Silberman Pedro C, Rutkowski Melanie R, Chopra S, Perales-Puchalt A, Song M et al (2015) ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161(7):1527–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Al-Khami AA, Zheng L, Del Valle L, Hossain F, Wyczechowska D, Zabaleta J et al (2017) Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncoimmunology 6(10):e1344804

    Article  PubMed  PubMed Central  Google Scholar 

  122. Maianski NA, Geissler J, Srinivasula SM, Alnemri ES, Roos D, Kuijpers TW (2004) Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Diff 11(2):143–153

    Article  CAS  Google Scholar 

  123. Youn J-I, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    Article  CAS  PubMed  Google Scholar 

  124. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Parekh A, Das S, Parida S, Das CK, Dutta D, Mallick SK et al (2018) Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo. Oncogene 37(33):4546–4561

    Article  CAS  PubMed  Google Scholar 

  126. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B et al (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123(8):3446–3458

    Article  CAS  PubMed Central  Google Scholar 

  127. Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA (2015) Activation-specific metabolic requirements for NK cell IFN-γ production. J Immunol 194(4):1954–1962

    Article  CAS  PubMed  Google Scholar 

  128. Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM et al (2014) mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol 193(9):4477–4484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Figure prepared by using Biorender and AI.

Author Contributions

R.S. conceived and authored the chapter’s first draft and provided little information. The chapter was critically reviewed, and an abbreviation list was created by A.V. and C.R. Most numbers of figures were supplied by U.A. All authors read and approved the final draft of the chapter.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Rathod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathod, S., Aggarwal, V., Upadhyay, A., Choudhari, R. (2022). Timing of the Major Metabolic Switches in Immune Cell Activation and Differentiation During Cancer Development. In: Macha, M.A., Bhat, A.A., Wani, N.A. (eds) Immuno-Oncology Crosstalk and Metabolism. Springer, Singapore. https://doi.org/10.1007/978-981-16-6226-3_7

Download citation

Publish with us

Policies and ethics