Skip to main content

BTI Analysis Tool (BAT) Model Framework—Generation of Interface Traps

  • Chapter
  • First Online:
Recent Advances in PMOS Negative Bias Temperature Instability

Abstract

In this chapter, the RD model is described to simulate the time kinetics of interface traps. The model uses inversion layer (cold) hole induced dissociation of Hydrogen passivated interfacial defects and defect-assisted conversion of atomic into molecular species (and reverse processes) in the gate insulator bulk during (and after) stress. The model is independently validated using DCIV measured data under DC and AC NBTI stress, from planar MOSFETs with different Nitrogen content in the gate insulator and FinFETs with different Germanium content in the channel. The process dependence is explained, and the validity of the physical mechanism and model parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Kimizuka, K. Yamaguchi, K. Imai, T. Iizuka, C.T. Liu, R.C. Keller, T. Horiuchi, in Symposium on VLSI Technology Digest of Technical Papers 92 (2000)

    Google Scholar 

  2. V. Huard, M. Denais, F. Perrier, N. Revil, C. Parthasarathy, A. Bravaix, E. Vincent, Microelectron. Reliab. 45, 83 (2005)

    Article  Google Scholar 

  3. A. T. Krishnan, C. Chancellor, S. Chakravarthi, P. E. Nicollian, V. Reddy, A. Varghese, R. B. Khamankar, and S. Krishnan, in IEEE International Electron Devices Meeting Technical Digest, 688 (2005)

    Google Scholar 

  4. D. Varghese, D. Saha, S. Mahapatra, K. Ahmed, F. Nouri, M. Alam, in IEEE International Electron Devices Meeting Technical Digest, 684 (2005)

    Google Scholar 

  5. Y. Mitani, T. Yamaguchi, H. Satake, A. Toriumi, in IEEE International Reliability Physics Symposium Proceedings, 226 (2007)

    Google Scholar 

  6. S. Mahapatra, K. Ahmed, D. Varghese, A.E. Islam, G. Gupta, L. Madhav, D. Saha, M.A. Alam, in IEEE International Reliability Physics Symposium Proceedings, 1 (2007)

    Google Scholar 

  7. Y. Mitani, H. Satake, A. Toriumi, IEEE Trans. Device Mater. Reliab. 8, 6 (2008)

    Article  Google Scholar 

  8. S. Pae, M. Agostinelli, M. Brazier, R. Chau, G. Dewey, T. Ghani, M. Hattendorf, J. Hicks, J. Kavalieros, K. Kuhn, M. Kuhn, J. Maiz, M. Metz, K. Mistry, C. Prasad, S. Ramey, A. Roskowski, J. Sandford, C. Thomas, J. Thomas, C. Wiegand, J. Wiedemer, in IEEE International Reliability Physics Symposium Proceedings, 352 (2008)

    Google Scholar 

  9. K. Joshi, S. Hung, S. Mukhopadhyay, V. Chaudhary, N. Nanaware, B. Rajamohanan, T. Sato, M. Bevan, A. Wei, A. Noori, B. McDougal, C. Ni, G. Saheli, C. Lazik, P. Liu, D. Chu, L. Date, S. Datta, A. Brand, J. Swenberg, S. Mahapatra, in IEEE International Reliability Physics Symposium Proceedings, 4C.2.1 (2013)

    Google Scholar 

  10. J. Franco, B. Kaczer, P.J. Roussel, J. Mitard, M. Cho, L. Witters, T. Grasser, G. Groeseneken, IEEE Trans. Electron Devices 60, 396 (2013)

    Google Scholar 

  11. P. Srinivasan, J. Fronheiser, K. Akarvardar, A. Kerber, L.F. Edge, R.G. Southwick, E. Cartier, H. Kothari, in IEEE International Reliability Physics Symposium Proceedings, 6A.3.1 (2014)

    Google Scholar 

  12. N. Parihar, N. Goel, S. Mukhopadhyay, S. Mahapatra, IEEE Trans. Electron Devices 65, 392 (2018)

    Google Scholar 

  13. N. Parihar, S. Mahapatra, in IEEE International Reliability Physics Symposium Proceedings, TX.5.1 (2018)

    Google Scholar 

  14. V. Huard, C. Ndiaye, M. Arabi, N. Parihar, X. Federspiel, S. Mhira, S. Mahapatra, A. Bravaix, in IEEE International Reliability Physics Symposium Proceedings, TX.4.1 (2018)

    Google Scholar 

  15. N. Parihar, R. Tiwari, C. Ndiaye, M. Arabi, S. Mhira, H. Wong, S. Motzny, V. Moroz, V. Huard, S. Mahapatra, in International Conference on Simulation of Semiconductor Processes and Devices, 167 (2018)

    Google Scholar 

  16. S. Ramey, A. Ashutosh, C. Auth, J. Clifford, M. Hattendorf, J. Hicks, R. James, A. Rahman, V. Sharma, A.S. Amour, C. Wiegand, in IEEE International Reliability Physics Symposium Proceedings, 4C.5.1 (2013)

    Google Scholar 

  17. K.T. Lee, W. Kang, E-A Chung, G. Kim, H. Shim, H. Lee, H. Kim, M. Choe, N.-I. Lee, A. Patel, J. Park, J. Park, in IEEE International Reliability Physics Symposium Proceedings, 2D.1.1 (2013)

    Google Scholar 

  18. J. Franco, B. Kaczer, A. Chasin, H. Mertens, L.-A. Ragnarsson, R. Ritzenthaler, S. Mukhopadhyay, H. Arimura, P. J. Roussel, E. Bury, N. Horiguchi, D. Linten, G. Groeseneken, A. Thean, in IEEE International Reliability Physics Symposium Proceedings, 4B.2.1 (2016)

    Google Scholar 

  19. G. Jiao, M. Toledano-Luque, K.-J. Nam, N. Toshiro, S.-H. Lee, J.-S. Kim, T. Kauerauf, E. Chung, D. Bae, G. Bae, D.-W. Kim, K. Hwang, in IEEE International Electron Devices Meeting Technical Digest, 31.2.1 (2016).

    Google Scholar 

  20. N. Parihar, R.G. Southwick, U. Sharma, M. Wang, J.H. Stathis, S. Mahapatra, in IEEE International Reliability Physics Symposium Proceedings, 2D.4.1 (2017)

    Google Scholar 

  21. N. Parihar, R. Southwick, M. Wang, J.H. Stathis, S. Mahapatra, in IEEE International Electron Devices Meeting Technical Digest, 7.3.1 (2017).

    Google Scholar 

  22. N. Parihar, U. Sharma, R.G. Southwick, M. Wang, J.H. Stathis, S. Mahapatra, IEEE Trans. Electron Devices 65, 23 (2018)

    Google Scholar 

  23. N. Parihar, R.G. Southwick, M. Wang, J.H. Stathis, S. Mahapatra, IEEE Trans. Electron Devices 65, 1699 (2018)

    Google Scholar 

  24. N. Parihar, R.G. Southwick, M. Wang, J.H. Stathis, S. Mahapatra, IEEE Trans. Electron Devices 65, 1707 (2018)

    Google Scholar 

  25. N. Parihar, R. Tiwari, S. Mahapatra, in International Conference on Simulation of Semiconductor Processes and Devices, 176 (2018)

    Google Scholar 

  26. R. Tiwari, N. Parihar, K. Thakor, H. Y. Wong, S. Motzny, M. Choi, V. Moroz, S. Mahapatra, IEEE Trans. Electron Devices 66, 2086 (2019)

    Google Scholar 

  27. R. Tiwari, N. Parihar, K. Thakor, H. Y. Wong, S. Motzny, M. Choi, V. Moroz, S. Mahapatra, IEEE Trans. Electron Devices 66, 2093 (2019)

    Google Scholar 

  28. N. Parihar, U. Sharma, R.G. Southwick, M. Wang, J. H. Stathis, S. Mahapatra, in IEEE International Reliability Physics Symposium Proceedings (2019)

    Google Scholar 

  29. M. Wang, J. Zhang, H. Zhou, R. G. Southwick, R. Hsin, K. Chao, X. Miao, V.S. Basker, T. Yamashita, D. Guo, G. Karve, H. Bu, in IEEE International Reliability Physics Symposium Proceedings (2019)

    Google Scholar 

  30. N. Choudhury, U. Sharma, H. Zhou, R.G. Southwick, M. Wang, S. Mahapatra, in IEEE International Reliability Physics Symposium Proceedings (2020)

    Google Scholar 

  31. H. Zhou, M. Wang, J. Zhang, K. Watanabe, C. Durfee, S. Mochizuki, R. Bao, R. Southwick, M. Bhuiyan, B. Veeraraghavan, in IEEE International Reliability Physics Symposium Proceedings (2020)

    Google Scholar 

  32. N. Choudhury, T. Samadder, R. Tiwari, H. Zhou, R.G. Southwick, M. Wang, S. Mahapatra, in IEEE International Reliability Physics Symposium Proceedings (2021)

    Google Scholar 

  33. S. Mahapatra, N. Goel, S. Desai, S. Gupta, B. Jose, S. Mukhopadhyay, K. Joshi, A. Jain, A.E. Islam, M.A. Alam, IEEE Trans. Electron Devices 60, 901 (2013)

    Google Scholar 

  34. A.E. Islam, N. Goel, S. Mahapatra, M.A. Alam, in Fundamentals of Bias Temperature Instability in MOS Transistors (Springer India, 2015), pp. 181–207

    Google Scholar 

  35. N. Choudhury, N. Parihar, N. Goel, A. Thirunavukkarasu, S. Mahapatra, IEEE J. Electron Devices Soc. 8, 1281 (2020)

    Google Scholar 

  36. T. Samadder, N. Choudhury, S. Kumar, D. Kochar, N. Parihar, S. Mahapatra, IEEE Trans. Electron Devices 68, 485 (2021)

    Google Scholar 

  37. S. Ling, A.M. El-Sayed, F. Lopez-Gejo, M.B. Watkins, V.V. Afanas’ev, A.L. Shluger, Microelectron. Eng. 109, 310 (2013)

    Google Scholar 

  38. K.F. Schuegraf, C. Hu, IEEE Trans. Electron Devices 41, 761 (1994)

    Google Scholar 

  39. K.O. Jeppson, C.M. Svensson, J. Appl. Phys. 48, 2004 (1977)

    Article  Google Scholar 

  40. M.A. Alam, S. Mahapatra, Microelectron. Reliab. 45, 71 (2005)

    Article  Google Scholar 

  41. M.A. Alam, in IEEE International Electron Devices Meeting Technical Digest, 14.1.1 (2003)

    Google Scholar 

  42. G. Chen, M.F. Li, C.H. Ang, J.Z. Zheng, D.L. Kwong, IEEE Electron Device Lett. 23, 734 (2002)

    Google Scholar 

  43. A.E. Islam, H. Kufluoglu, D. Varghese, S. Mahapatra, M.A. Alam, IEEE Trans. Electron Devices 54, 2143 (2007)

    Google Scholar 

  44. F. Schanovsky, T. Grasser, in IEEE International Reliability Physics Symposium Proceedings, XT.10.1 (2012).

    Google Scholar 

  45. K.L. Brower, S.M. Myers, Appl. Phys. Lett. 57, 162 (1990)

    Article  Google Scholar 

  46. S. Kumar, R. Anandkrishnan, N. Parihar, S. Mahapatra, IEEE Trans. Electron Devices 67, 4741 (2020).

    Google Scholar 

  47. S. Rangan, N. Mielke, E.C.C. Yeh, in IEEE International Electron Devices Meeting Technical Digest, 14.3.1 (2003)

    Google Scholar 

  48. N. Goel, S. Mahapatra, in Fundamentals of Bias Temperature Instability in MOS Transistors (Springer India, 2015), pp. 209–263

    Google Scholar 

  49. https://nanohub.org/resources/bandstrlab

  50. S.S. Tan, T.P. Chen, C.H. Ang, L. Chan, IEEE Electron Device Lett. 25, 504 (2004)

    Google Scholar 

  51. J.H. Stathis, S. Mahapatra, T. Grasser, Microelectron. Reliab. 81, 244 (2018)

    Article  Google Scholar 

  52. P.M. Lenahan, P.V. Dressendorfer, J. Appl. Phys. 55, 3495 (1984)

    Article  Google Scholar 

  53. E. Cartier, J.H. Stathis, D.A. Buchanan, Appl. Phys. Lett. 63, 1510 (1993)

    Article  Google Scholar 

  54. J.H. Stathis, E. Cartier, Phys. Rev. Lett. 72, 2745 (1994)

    Article  Google Scholar 

  55. E. Cartier, J.H. Stathis, Microelectron. Eng. 28, 3 (1995)

    Article  Google Scholar 

  56. J.H. Stathis, D.J. DiMaria, Appl. Phys. Lett. 61, 2887 (1992)

    Article  Google Scholar 

  57. J.P. Campbell, P.M. Lenahan, A.T. Krishnan, S. Krishnan, in IEEE International Reliability Physics Symposium Proceedings, 442 (2006)

    Google Scholar 

  58. S. Fujieda, Y. Miura, M. Saitoh, E. Hasegawa, S. Koyama, K. Ando, Appl. Phys. Lett. 82, 3677 (2003)

    Article  Google Scholar 

  59. J.P. Campbell, P.M. Lenahan, A.T. Krishnan, S. Krishnan, in 2007 IEEE International Reliability Physics Symposium Proceedings, 503 (2007)

    Google Scholar 

  60. J.T. Ryan, P.M. Lenahan, A.T. Krishnan, S. Krishnan, J.P. Campbell, in IEEE International Reliability Physics Symposium Proceedings, 988 (2009).

    Google Scholar 

  61. S. Mukhopadhyay, K. Joshi, V. Chaudhary, N. Goel, S. De, R.K. Pandey, K.V.R.M. Murali, S. Mahapatra, in IEEE International Reliability Physics Symposium Proceedings, GD 3.1 (2014)

    Google Scholar 

  62. C.J. Nicklaw, Z. Lu, D.M. Fleetwood, R.D. Schrimpf and S.T. Pantelides, IEEE Trans. on Nucl. Sci. 49, 2667 (2002)

    Google Scholar 

  63. D.P. DiVincenzo, J. Bernholc, M.H. Brodsky, Phys. Rev. B 28, 3246 (1983)

    Article  Google Scholar 

  64. R. Khatri, P. Asoka-Kumar, B. Nielsen, L.O. Roellig, K.G. Lynn, Appl. Phys. Lett. 65, 330 (1994)

    Article  Google Scholar 

  65. S.T. Pantelides, L. Tsetseris, S.N. Rashkeev, X.J. Zhou, D.M. Fleetwood, R.D. Schrimpf, Microelectron. Reliab. 47, 903 (2007)

    Article  Google Scholar 

  66. T. Grasser, M. Waltl, Y. Wimmer, W. Goes, R. Kosik, G. Rzepa, H. Reisinger, G. Pobegen, A. El-Sayed, A. Shluger, B. Kaczer, in IEEE International Electron Devices Meeting Technical Digest, 20.1.1 (2015).

    Google Scholar 

  67. K.L. Brower, Phys. Rev. B 38, 9657 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

All experimental data presented in this chapter are re-plotted from previously published reports. One of the authors (Souvik Mahapatra) acknowledges Muhammad Ashraful Alam and Ahmed Ehteshamul Islam for discussion on defect kinetics modeling. The authors acknowledge applied materials for providing planar MOSFETs and IBM for providing measurement facilities and FinFETs. One of the authors (Narendra Parihar) acknowledges Richard Southwick, Miaomiao Wang and James Stathis for help with measurement facilities. Karansingh Thakor is acknowledged for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Mahapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahapatra, S., Parihar, N., Mukhopadhyay, S., Goel, N. (2022). BTI Analysis Tool (BAT) Model Framework—Generation of Interface Traps. In: Mahapatra, S. (eds) Recent Advances in PMOS Negative Bias Temperature Instability. Springer, Singapore. https://doi.org/10.1007/978-981-16-6120-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6120-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6119-8

  • Online ISBN: 978-981-16-6120-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics