Skip to main content

Importance of Nanotechnology, Various Applications in Electronic Field

  • Chapter
  • First Online:
Nanotechnology for Electronic Applications

Abstract

This literature review paper closely looked into different aspects of nanoelectronics and nanomagnetics. A brief overview was given followed by the review in nanoelectronics and nanomagnetics. In nanoelectronics, carbon nanotubes, nanowires and sensors as well some miscellaneous categories were focused upon. Nanomagnetics had a variety of aspects that were equally focused upon except for RFID; since RFID is such an upcoming prospect in the nanotechnology field, and it was focused on greater detail. Currently, in the fields of nanoelectronic and nanomagnetic architecture, devices and fabrication methods are of great importance. This is the most focused area and even in the near future, these particular areas are the main focus for further advancement. All in all, this literature review paper considered a variety of nanoelectronic and nanomagnetic aspects since it is a promising industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 226(5187):1021–1024

    Article  Google Scholar 

  2. Ajayan PM, Endo M, Song L et al (2012) Fabrication and characterization of single-walled carbon nanotube fiber for electronics applications. Carbon 50(15):5521–5524

    Article  Google Scholar 

  3. Barett JT (n.d.) Examples of nanotechnology applications in electronics. http://science.opposingviews.com/examples-nanotechnology-applications-electronics-18240.html

  4. Baughman RH, Zakhidov AA, Heer WA (2007) Carbon nanotubes—the route toward applications. Science’s Compass. http://www.gel.usherbrooke.ca/beauvais/documents/Science_297_787_2002.pdf

  5. Bhirde AA, Patel V, Gavard J et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    Article  CAS  Google Scholar 

  6. Chavan PG, Badadhe SS, Mulla IS et al (2011) Synthesis of single crystalline CdS nanocombs and their application in photo-sensitive field emission switches. Nanoscale 3:1078–1083

    Article  CAS  Google Scholar 

  7. Chavan PG, Kashid RV, Badhade SS et al (2014) CdS nanowires: ultra-long growth and enhanced field emission properties. Vacuum 101:38–45

    Article  CAS  Google Scholar 

  8. Chen Y, Xihua W, Shyamsunder E et al (2006) Silicon-based nanoelectronic field-effect PH sensor with local gate control. Appl Phys Lett 89(22):223512

    Google Scholar 

  9. Cheng Q, Katy R, Ehsan J (2013) Carbon nanotube–poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Bio-Med Eng Soc 41:904–916

    Google Scholar 

  10. Clarke P (2006) KAIST claims size record with 3-nm FinFET. EE Times. http://www.eetimes.com/document.asp?doc_id=1160025

  11. Cleland AN, Roukes ML (2008) Silicon nanowires: advanced fabrication methods. J Appl Phys 92:2758–2769

    Article  Google Scholar 

  12. Compañó R (2001) Trends in nanoelectronics. Nanotechnology 12(2):85–88

    Article  Google Scholar 

  13. Datta A, Chavan PG, Sheini FJ et al (2009) Growth, optical, and field emission properties of aligned CdS nanowires. Cryst Growth Des 9(9):4157–4162

    Article  CAS  Google Scholar 

  14. Deng D, Jin Y, Chen Y et al (2012) Preparation of copper nanoparticles with low sintering temperature. Paper presented at 14th international conference on electronic materials and packaging (EMAP), pp 1–4

    Google Scholar 

  15. Drexler KE (2001) Machine-phase nanotechnology. Sci Am 285(3):74–75

    Article  CAS  Google Scholar 

  16. European Commissions (2009) FP7 workshop on advanced nanoelectronics technologies. Nano-Sil, 11 Sept 2009. Web, 6 Apr 2014. http://www.nanosil-noe.eu/data/document/report-advanced-nanoelectronics.pdf

  17. Gentleman E, Lay AN, Dickerson DA et al (2003) Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 24:3805–3813

    Article  CAS  Google Scholar 

  18. Haratifar E, Shahverdi HR, Shakibaie M et al (2009) Semi-biosynthesis of magnetite-gold composite nanoparticles using an ethanol extract of Eucalyptus camaldulensis and study of the surface chemistry. J Nanomater 5:1687–4110

    Google Scholar 

  19. Hoffman RL, Norris BJ, Wager JF (2003) ZnO-based transparent thin-film transistors. Appl Phys Lett 82(5):733–735

    Article  CAS  Google Scholar 

  20. Hsing I, Xu Y, Zhao W (2007) Micro-and nano-magnetic particles for applications in biosensing. Electroanalysis 19(7–8):755–768

    Article  CAS  Google Scholar 

  21. Huang S-CJ, Artyukhin AB, Misra N et al (2010) Carbon nanotube transistor controlled by a biological ion pump gate. Nano Lett 10(5):1812–1816

    Article  CAS  Google Scholar 

  22. Inberg A, Livshits P, Zalevsky Z et al (2012) Electroless deposition of silver thin films on gold nanoparticles catalyst for micro and nanoelectronics applications. Microelectron Eng 98:570–573

    Article  CAS  Google Scholar 

  23. Johnson RC (2002) Nanoscale metal deposition eyed for MRAMs. EE Times. https://www.eetimes.com/nanoscale-metal-deposition-eyed-for-mrams/

  24. Krane J (2001) Bell labs builds nano-transistor. BC Cylce. http://www.lexisnexis.com/hottopics/lnacademic/?verb=sr&csi=7911&sr=HEADLINE(Bell_Labs_builds_nano-transistor)+AND+DATE+IS+2001-10-17

  25. Larson D, Zipfel W, Williams R et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434–1436. http://www.sciencemag.org/content/300/5624/1434.full

  26. Lee CJ, Lee TJ, Lyu SC et al (2002) Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl Phys Lett 81(19):3648

    Article  CAS  Google Scholar 

  27. Li L, Wu P, Fang X et al (2010) Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv Mater 22(29):3161–3165

    Article  CAS  Google Scholar 

  28. Liu Z, Chen K, Davis C et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652

    Article  CAS  Google Scholar 

  29. Lui Z, Zhang D, Han S et al (2004) Single crystalline magnetite nanotubes. Unpublished raw data, Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California. http://pubs.acs.org.ezproxy.lib.ryerson.ca/doi/pdf/10.1021/ja0445239

  30. Nakano M, Matsuura H, Dong-ying J et al (2008) Drug delivery system using nano-magnetic fluid. Presented at 3rd international conference on innovative computing information and control, p 338, 18–20 June 2008

    Google Scholar 

  31. Nanocyl SA (2009) Carbon nanotubes. http://www.nanocyl.com/en/CNT-Expertise-Centre/Carbon-Nanotubes

  32. Pan H, Poh C, Zhu Y et al (2008) Novel CdS nanostructures: synthesis and field emission. J Phys Chem 112(30):11227–11230

    CAS  Google Scholar 

  33. Qingsu C, Rutledge K, Jabbarzadeh E (2013) Carbon nanotube–poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Bio-Med Eng Soc 41:904–916

    Google Scholar 

  34. Raj PM, Sharma H, Mishra D et al (2012) Nanomagnetics for high-performance, miniaturized power, and RF components [nanopackaging]. IEEE Nanotechnol Mag 6(3):18–23

    Article  Google Scholar 

  35. Sebastian PJ, Gamboa SA (2005) Nanotechnology applied to thin film solar cells. Sol Energy Mater Sol Cells 88(2):129–130

    Article  CAS  Google Scholar 

  36. Skomski R (2003) Nanomagnetics. J Phys: Condens Matter 15(20)

    Google Scholar 

  37. Smith D (2012) Nano-transistor breakthrough to offer billion times faster computer. The Sydney Morning Herald. http://www.smh.com.au/technology/sci-tech/nanotransistor-breakthrough-to-offer-billion-times-faster-computer-20120220-1thqk.html

  38. Star A, Han T-R, Joshi V et al (2004) Nanoelectronic carbon dioxide sensors. Adv Mater 16:2049–2052

    Article  CAS  Google Scholar 

  39. Thiess A, Mokrousov Y, Heinze S et al (2009) Magnetically hindered chain formation in transition-metal break junctions. Phys Rev Lett 103(21):217201

    Google Scholar 

  40. Torrisi F, Daping C, Tawfique H et al (2012) Inkjet-printed graphene electronics. ACS Nano 6(4):2992–3006

    Article  CAS  Google Scholar 

  41. Voldman S, Hui D, Warriner L et al (2000) Electrostatic discharge (ESD) protection in silicon-on-insulator (SOI) CMOS technology with aluminum and copper interconnects in advanced microprocessor semiconductor chips. J Electrostat 49(3):151–168

    Article  CAS  Google Scholar 

  42. Wang C (2011) Carbon nanotube nanoelectronics and macroelectronics. Dissertation, University of Southern California

    Google Scholar 

  43. Webster TJ, Waid MC, McKenzie JL et al (2004) Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 15:48–54

    Article  CAS  Google Scholar 

  44. Welser J, Wolf S, Avouris P et al (2010) Applications: nanoelectronics and nanomagnetics. http://www.cein.ucla.edu/new/file_uploads/chapter08.pdf

  45. Welser J, Wolf S, Avouris P et al (2011) Applications: nanoelectronics and nanomagnetics. Nanotechnology research directions for societal needs in 2020. Springer, Netherlands, pp 375–415

    Chapter  Google Scholar 

  46. Wu W, Wieckowski S, Pastorin G et al (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 44:6358–6362

    Article  CAS  Google Scholar 

  47. Yarris L (2014) Cooling microprocessors with carbon nanotubes. Berkeley Lab News Center. http://newscenter.lbl.gov/news-releases/2014/01/22/cooling-microprocessors-with-carbon-nanotubes/

  48. Zhai T, Fang X, Bando Y et al (2009) Characterization, cathodoluminescence, and field-emission properties of morphology-tunable CdS micro/nanostructures. Adv Funct Mater 19(15):2423–2430

    Article  CAS  Google Scholar 

  49. Zhai T, Fang X, Bando Y et al (2009) Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. ACS Nano 3(4):949–959

    Article  CAS  Google Scholar 

  50. Zhang M, Zhai T, Wang X et al (2010) Arm-length-controlled synthesis, field emission, and luminescence of CdS multipods. Cryst Growth Des 10(3):1201–1206

    Article  Google Scholar 

  51. Zhang D, Ryu K, Liu X et al (2006) Transparent, conductive, and flexible carbon nanotube films and their application in solar energy. Nano Lett 6:1880–1886

    Article  CAS  Google Scholar 

  52. Zhirnov V, Herr JC, Muirhead G (2008) New frontiers: self-assembly and nanoelectronics. J Nanoelectron 2008:11

    Google Scholar 

  53. Zhirnov V, Herr JC (2001) New frontiers: self-assembly and nanolectronics. Computer 34(1):34–43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Dahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghouse, H., Slewa, L., Mahmood, M., Rehmat, S., Musharrat, S., Dahman, Y. (2022). Importance of Nanotechnology, Various Applications in Electronic Field. In: Mubarak, N.M., Gopi, S., Balakrishnan, P. (eds) Nanotechnology for Electronic Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-6022-1_1

Download citation

Publish with us

Policies and ethics