Skip to main content

Sources and Therapeutic Strategies of Mesenchymal Stem Cells in Regenerative Medicine

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Therapy

Abstract

During the past decade, mesenchymal stem cells (MSCs) have made their mark as a potential weapon in regenerative medicine. Since their first isolation by Friedenstein in the late 1970s of the last century, MSCs have opened new avenues in the field of regenerative medicine. The main fascination about MSCs lies in their ease of isolation and large ex vivo expansion capacity, as well as demonstrated multipotency and immunomodulatory activities. Basically, several reports have proved that MSCs isolated from different sources possess different characteristics and potentials. In addition, the mechanisms by which these cells can help regenerate tissues and treat several diseases have been proved to be far more complicated than ever thought of. Moreover, a growing body of research has revealed that the therapeutic effects of MSCs occur largely via paracrine signaling and secreted extracellular vesicles, which act as “signalosomes” controlling fundamental cellular functions in recipient cells. In this chapter, we will discuss how MSCs isolated from different sources such as bone marrow; the prototype MSCs, adipose tissue, and umbilical cord differ in their characteristics as potential sources of allogenic versus autologous cell therapy options. Besides, we will clarify the main documented mechanisms of action which MSCs play in regenerative medicine including their differentiation to tissues of mesenchymal versus non-mesenchymal lineages. Additionally, the immune-modulatory effects of MSCs will be discussed as an important arm in their therapeutic potential. Finally, we will discuss the potential of extracellular vesicles produced by MSCs as an emerging cell-free alternative to stem cells therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BM:

Bone marrow

CM:

Conditioned medium

EVs:

Extracellular vesicles

FDA:

Food and Drug Administration

FGF:

Fibroblast growth factor

GMP:

Good Manufacturing Practice

GvHD:

Graft vs host rejection disease

HGF:

Hepatocyte growth factor

IDO:

Indoleamine-pyrrole 2,3-dioxygenase

IFN-γ:

Interferon-γ

ISCT:

International Society for Cellular Therapy

MSCs:

Mesenchymal stem cells

NK cells:

Natural killer cells

PDL-1:

Programmed death ligand-1

PGE2:

Prostaglandin E2

PRP:

Platelet-rich plasma

SVF:

Stromal vascular fraction

TGF-β1:

Transforming growth factor-β1

TNF-α:

Tumor necrosis factor-α

UC:

Umbilical cord

UCB:

Umbilical cord blood

WJ:

Wharton’s jelly

References

  • Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour AA, Yousefi M, Talebi M, Shamsasenjan K (2020) Regenerative potential of Wharton’s jelly-derived mesenchymal stem cells: a new horizon of stem cell therapy. J Cell Physiol 235(12):9230–9240. https://doi.org/10.1002/jcp.29810

    Article  CAS  PubMed  Google Scholar 

  • Adolfsson E, Helenius G, Friberg Ö, Samano N, Frøbert O, Johansson K (2020) Bone marrow- and adipose tissue-derived mesenchymal stem cells from donors with coronary artery disease; growth, yield, gene expression and the effect of oxygen concentration. Scand J Clin Lab Invest 80(4):318–326. https://doi.org/10.1080/00365513.2020.1741023

    Article  CAS  PubMed  Google Scholar 

  • Aguena M, Fanganiello RD, Tissiani LA, Ishiy FA, Atique R, Alonso N, Passos-Bueno MR (2012) Optimization of parameters for a more efficient use of adipose-derived stem cells in regenerative medicine therapies. Stem Cells Int 2012:303610

    Article  PubMed  PubMed Central  Google Scholar 

  • Alstrup T, Eijken M, Brunbjerg ME, Hammer-Hansen N, Moller BK, Damsgaard TE (2020) Measured levels of human adipose tissue-derived stem cells in adipose tissue is strongly dependent on harvesting method and stem cell isolation technique. Plast Reconstr Surg 145:142–150

    Article  CAS  PubMed  Google Scholar 

  • Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T (2016) Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int 2016:6901286

    Article  PubMed  PubMed Central  Google Scholar 

  • Azandeh S, Orazizadeh M, Hashemitabar M, Khodadadi A, Shayesteh A, Nejad D, Gharravi A et al (2012) Mixed enzymatic-explant protocol for isolation of mesenchymal stem cells from Wharton’s jelly and encapsulation in 3D culture system. J Biomed Sci Eng 5:580–586. https://doi.org/10.4236/jbise.2012.510071

    Article  CAS  Google Scholar 

  • Badowski MS, Harris DT (2012) Collection, processing, and banking of umbilical cord blood stem cells for transplantation and regenerative medicine. Methods Mol Biol 879:279–290. https://doi.org/10.1007/978-1-61779-815-3_16

    Article  CAS  PubMed  Google Scholar 

  • Bajek A, Gurtowska N, Olkowska J, Maj M, Kazmierski L, Bodnar M, Marszalek A et al (2017) Does the harvesting technique affect the properties of adipose-derived stem cells? – the comparative biological characterization. J Cell Biochem 118:1097–1107

    Article  CAS  PubMed  Google Scholar 

  • Banyard DA, Salibian AA, Widgerow AD, Evans GR (2015) Implications for human adipose-derived stem cells in plastic surgery. J Cell Mol Med 19:21–30

    Article  PubMed  Google Scholar 

  • Barbagallo I, Li Volti G, Galvano F, Tettamanti G, Pluchinotta FR, Bergante S, Vanella L (2017) Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes. Exp Biol Med 242(10):1079–1085. https://doi.org/10.1177/1535370216681552

    Article  CAS  Google Scholar 

  • Batsali A, Kastrinaki M, Papadaki H, Pontikoglou C (2013) Mesenchymal stem cells derived from Wharton’s jelly of the umbilical cord: biological properties and emerging clinical applications. Curr Stem Cell Res Ther 8:144–155

    Article  CAS  PubMed  Google Scholar 

  • Berebichez-Fridman R, Montero-Olvera PR (2018) Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 18(3):e264–e277. https://doi.org/10.18295/squmj.2018.18.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhartiya D, Shaikh A, Nagvenkar P, Kasiviswanathan S, Pethe P, Pawani H, Mohanty S (2012) Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Dev 21(1):1–6. https://doi.org/10.1089/scd.2011.0311

    Article  CAS  PubMed  Google Scholar 

  • Bhat S, Viswanathan P, Chandanala S, Prasanna SJ, Seetharam RN (2021) Expansion and characterization of bone marrow derived human mesenchymal stromal cells in serum-free conditions. Sci Rep 11:3403. https://doi.org/10.1038/s41598-021-83088-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian Y, Deng C, Li W, Lei Z, Li Y, Li X (2016) A comparative study on the biological characteristics of human adipose-derived stem cells from lipectomy and liposuction. PLoS One 11:e0162343

    Article  PubMed  PubMed Central  Google Scholar 

  • Bieback K, Hecker A, Kocaomer A, Lannert H, Schallmoser K, Strunk D, Kluter H (2009) Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 27:2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Bjorge IM, Kim SY, Mano JF, Kalionis B, Chrzanowski W (2018) Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine – a new paradigm for tissue repair. Biomater Sci 6:60–78

    Article  Google Scholar 

  • Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15:641–648

    Article  PubMed  PubMed Central  Google Scholar 

  • Buccini S, Haider KH, Ahmed RPH, Jiang S, Ashraf M (2012) Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol 107(6):301

    Article  PubMed  PubMed Central  Google Scholar 

  • Can A, Celikkan FT, Cinar O (2017) Umbilical cord mesenchymal stromal cell transplantations: a systemic analysis of clinical trials. Cytotherapy 19:1351–1382

    Article  PubMed  Google Scholar 

  • Caplan A (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (1994) The mesengenic process. Clin Plast Surg 21(3):429–435

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6:1445–1451. https://doi.org/10.1002/sctm.17-0051

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C (2020) Immunomodulatory effect of adipose-derived stem cells: the cutting edge of clinical application. Front Cell Dev Biol 8:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatzistamatiou T, Papassavas A, Michalopoulos E, Gamaloutsos C, Mallis P, Gontika I, Panagouli E et al (2014) Optimizing isolation culture and freezing methods to preserve Wharton’s jelly’s mesenchymal stem cell (MSC) properties: an MSC banking protocol validation for the Hellenic Cord Blood Bank. Transfusion 54:3108–3120

    Article  PubMed  Google Scholar 

  • Chen L, Tredget E, Wu P, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3:e1886

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen MY, Lie PC, Li ZL, Wei X (2009) Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol 37(5):629–640. https://doi.org/10.1016/j.exphem.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Liu HY, Chang YT, Cheng YH, Mersmann HJ, Kuo WH, Ding ST (2016) Isolation and differentiation of adipose-derived stem cells from porcine subcutaneous adipose tissues. J Vis Exp 2016:e53886

    Google Scholar 

  • ClinicalTrials.gov (2019) https://clinicaltrials.gov/

  • Colao IL, Corteling R, Bracewell D, Wall I (2018) Manufacturing exosomes: a promising therapeutic platform. Trends Mol Med 24:242–256

    Article  CAS  PubMed  Google Scholar 

  • Conley SM, Hickson LJ, Kellogg TA, McKenzie T, Heimbach JK, Taner T, Tang H et al (2020) Human obesity induces dysfunction and early senescence in adipose tissue-derived mesenchymal stromal/stem cells. Front Cell Dev Biol 8:197. https://doi.org/10.3389/fcell.2020.00197

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Silva Meirelles L, Chagastelles P, Nardi N (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  PubMed  Google Scholar 

  • Dai R, Wang Z, Samanipour R, Koo KI, Kim K (2016) Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cells Int 2016:6737345

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies LC, Heldring N, Kadri N, Le Blanc K (2017) Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells 35:766–776

    Article  CAS  PubMed  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  • de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, Shankar AS et al (2018) Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 36:602–615

    Article  PubMed  Google Scholar 

  • Derkus B, Emregul KC, Emregul E (2017) A new approach in stem cell research – exosomes: their mechanism of action via cellular pathways. Cell Biol Int 41:466–475

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • El-Demerdash RF, Hammad LN, Kamal MM, El Mesallamy HO (2015) A comparison of Wharton’s jelly and cord blood as a source of mesenchymal stem cells for diabetes cell therapy. Regen Med 10:841–855

    Article  CAS  PubMed  Google Scholar 

  • Farini A, Sitzia C, Erratico S, Meregalli M, Torrente Y (2014) Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int 2014:306573

    Article  PubMed  PubMed Central  Google Scholar 

  • Fathi E, Farahzadi R (2009) Isolation, culturing, characterization and aging of adipose tissue-derived mesenchymal stem cells: a brief overview. Braz Arch Biol Technol 59:e16150383. https://doi.org/10.1590/1678-4324-2016150383

    Article  CAS  Google Scholar 

  • Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Goncalves RM (2018) Mesenchymal stromal cell Secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol 9:2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong C, Chak L, Biswas A, Tan J, Gauthaman K, Chan W, Bongso A (2011) Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Rep 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Fong C-Y, Subramanian A, Biswas A, Bongso A (2016) Freezing of fresh Wharton’s jelly from human umbilical cords yields high post-thaw mesenchymal stem cell numbers for cell-based therapies. J Cell Biochem 117:815–827

    Article  CAS  PubMed  Google Scholar 

  • Fontes T, Brandão I, Negrão R, Martins MJ, Monteiro R (2018) Autologous fat grafting: harvesting techniques. Ann Med Surg 36:212–218. https://doi.org/10.1016/j.amsu.2018.11.005

    Article  Google Scholar 

  • Franquesa M, Mensah FK, Huizinga R, Strini T, Boon L, Lombardo E, DelaRosa O et al (2015) Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. Stem Cells 33:880–891

    Article  CAS  PubMed  Google Scholar 

  • Frausin S, Viventi S, Verga Falzacappa L, Quattromani MJ, Leanza G, Tommasini A, Valencic E (2015) Wharton’s jelly derived mesenchymal stromal cells: biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem 117(4–5):329–338. https://doi.org/10.1016/j.acthis.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  • Friedenstein A, Chailakhyan R, Latsinik N, Panasyuk A, Keiliss-Borok I (1974) Stromal cells responsible for transfering the microenvironment of the hemopoeitic tissues: cloning in-vitro and retransplantation in-vivo. Transplantation 17:331–340

    Article  CAS  PubMed  Google Scholar 

  • Gale AL, Linardi RL, George M, Mammone RM, Ortved KF (2019) Comparison of the chondrogenic differentiation potential of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells. Front Vet Sci 6:178. https://doi.org/10.3389/fvets.2019.00178

    Article  PubMed  PubMed Central  Google Scholar 

  • Gangoda L, Boukouris S, Liem M, Kalra H, Mathivanan S (2015) Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics 15(2–3):260–271

    Article  CAS  PubMed  Google Scholar 

  • Gatta V, D’Aurora M, Lanuti P, Pierdomenico L, Sperduti S, Palka G, Gesi M et al (2013) Gene expression modifications in Wharton’s jelly mesenchymal stem cells promoted by prolonged in vitro culturing. BMC Genomics 14:635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentile P, Piccinno MS, Calabrese C (2019) Characteristics and potentiality of human adipose-derived stem cells (hASCs) obtained from enzymatic digestion of fat graft. Cells 8(3):282. https://doi.org/10.3390/cells8030282

    Article  CAS  PubMed Central  Google Scholar 

  • Ghamari A, Daghigh F, Mohebbi A, Rahimi Y, Shojaie L, Zolbin MM (2021) Chapter 3. Caracteristic and regenerative potential of human endometrial stem cells and progenitors. In: Stem cells: from potential to promise. Springer, Singapore

    Google Scholar 

  • Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312

    Article  CAS  PubMed  Google Scholar 

  • Gieseke F, Bohringer J, Bussolari R, Dominici M, Handgretinger R, Muller I (2010) Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood 116:3770–3779

    Article  CAS  PubMed  Google Scholar 

  • Gnanasegaran N, Govindasamy V, Musa S, Kasim NH (2014) Different isolation methods alter the gene expression profiling of adipose derived stem cells. Int J Med Sci 11:391–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyal U, Jaiswal C, Ta M (2018) Isolation and establishment of mesenchymal stem cells from Wharton’s jelly of human umbilical cord. Bio Protoc 8(4):e2735. https://doi.org/10.21769/BioProtoc.2735

    Article  PubMed  PubMed Central  Google Scholar 

  • Granero-Moltó F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, Longobardi L et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898

    Article  PubMed  PubMed Central  Google Scholar 

  • Haider KH (2017) Hematopoietic stem cell transplantation: the quality matters. J Stem Cell Res Ther 7:6

    Article  Google Scholar 

  • Haider KH, Aramini B (2020) Mircrining the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther 11(1):23. https://doi.org/10.1186/s13287-019-1548-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Haider KH, Ashraf M (2005) Bone marrow cell transplantation in clinical perspective. J Mol Cell Cardiol 238:225–235

    Article  Google Scholar 

  • Haider KH, Aslam M (2018) Cell-free therapy with stem cell secretions: protection, repair and regeneration of the injured myocardium. In: Haider KH, Aziz S (eds) Stem cells: from hype to real hope, Medicine & life sciences. De Gruyter, Berlin. https://doi.org/10.1515/9783110587043-003

    Chapter  Google Scholar 

  • Hall MN, Rosenkrantz WS, Hong JH, Griffin CE, Mendelsohn CM (2010) Evaluation of the potential use of adipose-derived mesenchymal stromal cells in the treatment of canine atopic dermatitis: a pilot study. Vet Ther 11:1–14

    Google Scholar 

  • Han YF, Tao R, Sun TJ, Chai JK, Xu G, Liu J (2013) Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology 65:819–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris DT (2014) Stem cell banking for regenerative and personalized medicine. Biomedicines 2(1):50–79. https://doi.org/10.3390/biomedicines2010050

    Article  PubMed  PubMed Central  Google Scholar 

  • Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwitz E, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini F, Deans R et al (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  CAS  PubMed  Google Scholar 

  • Hu CD, Kosaka Y, Marcus P, Rashedi I, Keating A (2019) Differential immunomodulatory effects of human bone marrow-derived mesenchymal stromal cells on natural killer cells. Stem Cells Dev 28:933–943

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Gong J, Meng H, Xu B, Yao L, Qian M, He Z et al (2013) Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow. Cell Biol Int 38:198–210

    Article  Google Scholar 

  • Hyvarinen K, Holopainen M, Skirdenko V, Ruhanen H, Lehenkari P, Korhonen M, Kakela R et al (2018) Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22. Front Immunol 9:771

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson WM, Nesti LJ, Tuan RS (2010) Potential therapeutic applications of muscle-derived mesenchymal stem and progenitor cells. Expert Opin Biol Ther 10:505–517. https://doi.org/10.1517/14712591003610606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janockova J, Slovinska L, Harvanova D, Spakova T, Rosocha J (2021) New therapeutic approaches of mesenchymal stem cells-derived exosomes. J Biomed Sci 28:39. https://doi.org/10.1186/s12929-021-00736-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Haider KH, Niagara MI, Salim A, Ashraf M (2006) Supportive interaction between cell survival signaling and angio-competent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 99:776–784. https://doi.org/10.1161/01.RES.0000244687.97719.4f

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Haider KH, Ahmed RP, Idris NM, Salim A, Ashraf M (2008) Transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. J Mol Cell Cardiol 44(3):582–596. https://doi.org/10.1016/j.yjmcc.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  • Kamal MM, Kassem DH (2020) Therapeutic potential of Wharton’s jelly mesenchymal stem cells for diabetes: achievements and challenges. Front Cell Dev Biol 8:16–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandoi S, Kumar LP, Patra B, Vidyasekar P, Sivanesan D, Vijayalakshmi S, Rajagopal K et al (2018) Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs. Sci Rep 8:12439. https://doi.org/10.1038/s41598-018-30772-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JY, Oh M-K, Joo H, Park HS, Chae D-H, Kim J, Lee H-R, Oh I-H, Yu K-R (2020) Xeno-free condition enhances therapeutic functions of human Wharton’s jelly-derived mesenchymal stem cells against experimental colitis by upregulated Indoleamine 2,3-dioxygenase activity. J Clin Med 9:2913. https://doi.org/10.3390/jcm9092913

    Article  CAS  PubMed Central  Google Scholar 

  • Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M (2020) Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 11:492

    Article  PubMed  PubMed Central  Google Scholar 

  • Karp J, Teo GL (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Article  CAS  PubMed  Google Scholar 

  • Kassem DH, Kamal MM (2020a) Mesenchymal stem cells and their extracellular vesicles: a potential game changer for the COVID-19 crisis. Front Cell Dev Biol 8:1035

    Article  Google Scholar 

  • Kassem DH, Kamal MM (2020b) Therapeutic efficacy of umbilical cord-derived stem cells for diabetes mellitus: a meta-analysis study. Stem Cell Res Ther 11:484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassem DH, Kamal MM (2020c) Wharton’s jelly MSCs: potential weapon to sharpen for our battle against DM. Trends Endocrinol Metab 31:271–273

    Article  CAS  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Khazaei S, Keshavarz G, Bozorgi A, Nazari H, Khazaei M (2021) Adipose tissue-derived stem cells: a comparative review on isolation, culture, and differentiation methods. Cell Tissue Bank. https://doi.org/10.1007/s10561-021-09905-z

  • Kim HW, Ashraf M, Jiang S, Haider KH (2012) Stem cell based delivery of hypoxamir-210 to the infarcted heart: implications on stem cell survival and preservation of the infarcted heart function. J Mol Med 90(9):997–1010

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Staples M, Shinozuka K, Pantcheva P, Kang S, Borlongan C (2013) Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14:11692–11712

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Choi YJ, Koh YG (2015) Mesenchymal stem cell implantation in knee osteoarthritis: an assessment of the factors influencing clinical outcomes. Am J Sports Med 43:2293–2301

    Article  PubMed  Google Scholar 

  • Knudtzon S (1974) In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood 43:357

    Article  CAS  PubMed  Google Scholar 

  • Koh YG, Kwon OR, Kim YS, Choi YJ, Tak DH (2016) Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy 32:97–109

    Article  PubMed  Google Scholar 

  • Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729

    Article  CAS  PubMed  Google Scholar 

  • Kunze KN, Burnett RA, Wright-Chisem J, Frank RM, Chahla J (2020) Adipose-derived mesenchymal stem cell treatments and available formulations. Curr Rev Musculoskelet Med 13:264–280

    Article  PubMed  PubMed Central  Google Scholar 

  • La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, Di Stefano A et al (2009) Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 131:267–282

    Article  PubMed  Google Scholar 

  • Lacy KJ, Christopher BR, Natalie P, Erica KG, Wayne MC (2021) Interactions between allogeneic mesenchymal stromal cells and the recipient immune system: a comparative review with relevance to equine outcomes. Front Vet Sci 7:1131. https://doi.org/10.3389/fvets.2020.617647

    Article  Google Scholar 

  • Lai VK, Afzal MR, Ashraf M, Jiang S, Haider KH (2012) Non-hypoxic stabilization of HIF-1α during coordinated interaction between Akt and angiopoietin-1 enhances endothelial commitment of bone marrow stem cells. J Mol Med 90(6):719–730

    Article  CAS  PubMed  Google Scholar 

  • Laroye C, Boufenzer A, Jolly L, Cunat L, Alauzet C, Merlin J-L, Yguel C et al (2019) Bone marrow vs Wharton’s jelly mesenchymal stem cells in experimental sepsis: a comparative study. Stem Cell Res Ther 10:192. https://doi.org/10.1186/s13287-019-1295-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Le H, Xu W, Zhuang X, Chang F, Wang Y, Ding J (2020) Mesenchymal stem cells for cartilage regeneration. J Tissue Eng 11:2041731420943839

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Hua J (2017) Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 74:2345–2360

    Article  CAS  PubMed  Google Scholar 

  • Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y (2014) Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med 34:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, Zhao GB et al (2015a) Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 6(1):55. https://doi.org/10.1186/s13287-015-0066-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L-M, Ruan G-X, Huangfu M-Y, Chen Z-L, Liu H-N, Li L-X, Hu Y-L et al (2015b) ScreenFect A: an efficient and low toxic liposome for gene delivery to mesenchymal stem cells. Int J Pharm 488:1–11

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Bi Y, Wu Q, Chen C, Zhou L, Qi J, Xie D et al (2021) A composite scaffold of Wharton’s jelly and chondroitin sulphate loaded with human umbilical cord mesenchymal stem cells repairs articular cartilage defects in rat knee. J Mater Sci Mater Med 32(4):36. https://doi.org/10.1007/s10856-021-06506-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Sicco C, Reverberi D, Balbi C, Ulivi V, Principi E, Pascucci L, Becherini P et al (2017) Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 6:1018–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lories RJ, Luyten FP (2011) The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 7:43–49

    Article  CAS  PubMed  Google Scholar 

  • Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell vesicles 3:26913

    Article  PubMed  Google Scholar 

  • Luther KM, Haar L, McGuinness M, Wang Y, Lynch Iv TL, Phan A, Song Y et al (2018) Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol 119:125–137

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y (2014) Immunobiology of mesenchymal stem cells. Cell Death Differ 21:216–225

    Article  CAS  PubMed  Google Scholar 

  • Mahmood A, Lu D, Lu M, Chopp M (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53:697–703

    Article  PubMed  Google Scholar 

  • Mahmoudi M, Taghavi-Farahabadi M, Rezaei N, Hashemi SM (2019) Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. Int Immunopharmacol 74:105689

    Article  CAS  PubMed  Google Scholar 

  • Manferdini C, Paolella F, Gabusi E, Gambari L, Piacentini A, Filardo G, Fleury-Cappellesso S et al (2017) Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation. Osteoarthr Cartil 25:1161–1171

    Article  CAS  Google Scholar 

  • Marigo I, Dazzi F (2011) The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol 33:593–602

    Article  PubMed  Google Scholar 

  • Marino L, Castaldi MA, Rosamilio R, Ragni E, Vitolo R, Fulgione C, Castaldi SG et al (2019) Mesenchymal stem cells from the Wharton’s jelly of the human umbilical cord: biological properties and therapeutic potential. Int J Stem Cells 12(2):218–226. https://doi.org/10.15283/ijsc18034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazini L, Rochette L, Amine M, Malka G (2019) Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci 20:2523

    Article  CAS  PubMed Central  Google Scholar 

  • Mazini L, Rochette L, Admou B, Amal S, Malka G (2020) Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing. Int J Mol Sci 21(4):1306. https://doi.org/10.3390/ijms21041306

    Article  CAS  PubMed Central  Google Scholar 

  • McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A et al (2006) The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24:1246–1253

    Article  CAS  PubMed  Google Scholar 

  • Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H (2013) Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med 2:455–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Moffett A, Loke Y (2003) The immunological paradox of pregnancy: a reappraisal. Placenta 25:1–8

    Article  Google Scholar 

  • Mohr A, Zwacka R (2018) The future of mesenchymal stem cell-based therapeutic approaches for cancer – from cells to ghosts. Cancer Lett 414:239–249

    Article  CAS  PubMed  Google Scholar 

  • Mosallaei M, Simonian M, Ehtesham N, Karimzadeh MR, Vatandoost N, Negahdari B, Salehi R (2020) Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther 27:854–868

    Article  CAS  PubMed  Google Scholar 

  • Munoz J, Shah N, Rezvani K, Hosing C, Bollard CM, Oran B, Olson A et al (2014) Concise review: umbilical cord blood transplantation: past, present, and future. Stem Cells Transl Med 3:1435–1443

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy J, Fink D, Hunziker E, Barry F (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474

    Article  PubMed  Google Scholar 

  • Najar M, Raicevic G, Kazan HF, de Bruyn C, Bron D, Toungouz M, Lagneaux L et al (2012) Immune-related antigens, surface molecules and regulatory factors in human-derived mesenchymal stromal cells: the expression and impact of inflammatory priming. Stem Cell Rev Rep 8:1188–1198. https://doi.org/10.1007/s12015-012-9408-1

    Article  CAS  PubMed  Google Scholar 

  • Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N (2019) Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 76:3323–3348

    Article  CAS  PubMed  Google Scholar 

  • Nekanti U, Rao V, Bahirvani A, Jan M, Totey S, Ta M (2009) Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev 19:117–130

    Article  Google Scholar 

  • Newton WC, Kim JW, Luo JZQ, Luo L (2017) Stem cell-derived exosomes: a novel vector for tissue repair and diabetic therapy. J Mol Endocrinol 59:R155–R165

    Article  CAS  PubMed  Google Scholar 

  • Niezgoda A, Niezgoda P, Nowowiejska L, Białecka A, Męcińska-Jundziłł K, Adamska U et al (2017) Properties of skin stem cells and their potential clinical applications in modern dermatology. Eur J Dermatol 27:227–236. https://doi.org/10.1684/ejd.2017.2988

    Article  CAS  PubMed  Google Scholar 

  • Norouzi-Barough L, Shirian S, Gorji A, Sadeghi M (2021) Therapeutic potential of mesenchymal stem cell-derived exosomes as a cell-free therapy approach for the treatment of skin, bone, and cartilage defects. Connect Tissue Res 2021:1–14

    Google Scholar 

  • Obradovic H, Krstic J, Trivanovic D, Mojsilovic S, Okic I, Kukolj T, Ilic V et al (2019) Improving stemness and functional features of mesenchymal stem cells from Wharton’s jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche. Placenta 82:25–34. https://doi.org/10.1016/j.placenta.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  • Oggu GS, Sasikumar S, Reddy N, Ella KKR, Rao CM, Bokara KK (2017) Gene delivery approaches for mesenchymal stem cell therapy: strategies to increase efficiency and specificity. Stem Cell Rev Rep 13:725–740

    Article  CAS  PubMed  Google Scholar 

  • Pirjali T, Azarpira N, Ayatollahi M, Aghdaie MH, Geramizadeh B, Talai T (2013) Isolation and characterization of human mesenchymal stem cells derived from human umbilical cord Wharton’s jelly and amniotic membrane. Int J Organ Transplant Med 4(3):111–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI et al (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regen Med 4:22. https://doi.org/10.1038/s41536-019-0083-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polisetti N, Chaitanya VG, Babu PP, Vemuganti GK (2010) Isolation, characterization and differentiation potential of rat bone marrow stromal cells. Neurol India 58:201–208

    Article  PubMed  Google Scholar 

  • Prantl L, Eigenberger A, Brix E, Kempa S, Baringer M, Felthaus O (2021) Adipose tissue-derived stem cell yield depends on isolation protocol and cell counting method. Cells 10(5):1113. https://doi.org/10.3390/cells10051113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad VK, Lucas KG, Kleiner GI, Talano JA, Jacobsohn D, Broadwater G, Monroy R et al (2011) Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal™) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 17:534–541

    Article  CAS  PubMed  Google Scholar 

  • Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129:118–129

    Article  PubMed  Google Scholar 

  • Qin Y, Guan J, Zhang C (2014) Mesenchymal stem cells: mechanisms and role in bone regeneration. Postgrad Med J 90:643–647

    Article  PubMed  Google Scholar 

  • Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, Ottonello L et al (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26:151–162

    Article  CAS  PubMed  Google Scholar 

  • Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN (2018) Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front Immunol 9:2538

    Article  PubMed  PubMed Central  Google Scholar 

  • Roura S, Pujal J-M, Gálvez-Montón C, Bayes-Genis A (2015) The role and potential of umbilical cord blood in an era of new therapies: a review. Stem Cell Res Ther 6:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell KA, Chow NH, Dukoff D, Gibson TW, LaMarre J, Betts DH, Koch TG (2016) Characterization and immunomodulatory effects of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells. PLoS One 11:e0167442

    Article  PubMed  PubMed Central  Google Scholar 

  • Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, Samani FS (2012) Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cell Dev Biol Anim 48(2):75–83. https://doi.org/10.1007/s11626-011-9480-x

    Article  PubMed  Google Scholar 

  • Salgado AJ, Reis RL, Sousa NJ, Gimble JM (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 5:103–110

    Article  CAS  PubMed  Google Scholar 

  • Shaer A, Azarpira N, Aghdaie MH, Esfandiari E (2014) Isolation and characterization of human mesenchymal stromal cells derived from placental decidua basalis; umbilical cord Wharton’s jelly and amniotic membrane. Pak J Med Sci 30(5):1022–1026. https://doi.org/10.12669/pjms.305.4537

    Article  PubMed  PubMed Central  Google Scholar 

  • Shetty P, Cooper K, Viswanathan C (2010) Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian J Transfus Sci 4:14–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Huang H, Lu X, Yan X, Jiang X, Xu R, Wang S et al (2021) Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct Target Ther 6:58. https://doi.org/10.1038/s41392-021-00488-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showalter MR, Wancewicz B, Fiehn O, Archard JA, Clayton S, Wagner J, Deng P et al (2019) Primed mesenchymal stem cells package exosomes with metabolites associated with immunomodulation. Biochem Biophys Res Commun 512:729–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla L, Yuan Y, Shayan R, Greening DW, Karnezis T (2020) Fat therapeutics: the clinical capacity of adipose-derived stem cells and exosomes for human disease and tissue regeneration. Front Pharmacol 11:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibov TT, Severino P, Marti LC, Pavon LF, Oliveira DM, Tobo PR, Campos AH et al (2012) Mesenchymal stem cells from umbilical cord blood: parameters for isolation, characterization and adipogenic differentiation. Cytotechnology 64:511–521

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh TP, Sherpa ML, Pradhan A, Singh TA (2019) Development of a simple selection protocol for optimizing the harvest of mesenchymal stem cells from explanted human umbilical cord Wharton’s jelly. Asian J Med Sci 10(4):1–8. https://doi.org/10.3126/ajms.v10i4.24456

    Article  Google Scholar 

  • Smith BD, Grande DA (2015) The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 11:213–222

    Article  CAS  PubMed  Google Scholar 

  • Song N, Scholtemeijer M, Shah K (2020) Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci 41:653–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells 24:1409–1410

    Article  PubMed  Google Scholar 

  • Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113:6576–6583

    Article  CAS  PubMed  Google Scholar 

  • Spurway J, Logan P, Pak S (2012) The development, structure and blood flow within the umbilical cord with particular reference to the venous system. Australas J Ultrasound Med 15:97–102. https://doi.org/10.1002/j.2205-0140.2012.tb00013.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21(14):2724–2752. https://doi.org/10.1089/scd.2011.0722

    Article  CAS  PubMed  Google Scholar 

  • Tasso R, Ulivi V, Reverberi D, Lo Sicco C, Descalzi F, Cancedda R (2013) In vivo implanted bone marrow-derived mesenchymal stem cells trigger a cascade of cellular events leading to the formation of an ectopic bone regenerative niche. Stem Cells Dev 22(24):3178–3191. https://doi.org/10.1089/scd.2013.0313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekkatte C, Gunasingh GP, Cherian KM, Sankaranarayanan K (2011) “Humanized” stem cell culture techniques: the animal serum controversy. Stem Cells Int 2011:504723

    Article  PubMed  PubMed Central  Google Scholar 

  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750

    Article  PubMed  PubMed Central  Google Scholar 

  • Todeschi MR, El Backly R, Capelli C, Daga A, Patrone E, Introna M, Cancedda R et al (2015) Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration. Stem Cells Dev 24(13):1570–1581. https://doi.org/10.1089/scd.2014.0490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh WS, Lai RC, Zhang B, Lim SK (2018) MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans 46:843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troyer D, Weiss M (2008) Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599

    Article  PubMed  Google Scholar 

  • Um S, Ha J, Choi SJ, Oh W, Jin HJ (2020) Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J Stem Cells 12(12):1511–1528. https://doi.org/10.4252/wjsc.v12.i12.1511

    Article  PubMed  PubMed Central  Google Scholar 

  • Valencia J, Blanco B, Yanez R, Vazquez M, Herrero Sanchez C, Fernandez-Garcia M, Rodriguez Serrano C et al (2016) Comparative analysis of the immunomodulatory capacities of human bone marrow- and adipose tissue-derived mesenchymal stromal cells from the same donor. Cytotherapy 18:1297–1311

    Article  CAS  PubMed  Google Scholar 

  • Varghese J, Griffin M, Mosahebi A, Butler P (2017) Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther 8:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Varkouhi AK, Monteiro APT, Tsoporis JN, Mei SHJ, Stewart DJ, dos Santos CC (2020) Genetically modified mesenchymal stromal/stem cells: application in critical illness. Stem Cell Rev Rep 16:812–827

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasandan AB, Shankar SR, Prasad P, Sowmya Jahnavi V, Bhonde RR, Jyothi Prasanna S (2014) Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament. J Cell Mol Med 18:344–354. https://doi.org/10.1111/jcmm.12192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J et al (2019) Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy 21:1019–1024

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hung S, Peng S, Huang C, Wei H, Guo Y, Fu Y, Lai M, Chen C (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337. https://doi.org/10.1634/stemcells.2004-0013

    Article  PubMed  Google Scholar 

  • Wang YQ, Wang M, Zhang P, Song JJ, Li YP, Hou SH, Huang CX (2008) Effect of transplanted mesenchymal stem cells from rats of different ages on the improvement of heart function after acute myocardial infarction. Chin Med J 121(22):2290–2298

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Qu X, Zhao R (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang LT, Ting CH, Yen ML, Liu KJ, Sytwu HK, Wu KK, Yen BL (2016a) Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 23:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Yang Q, Wang Z, Tong H, Ma L, Zhang Y, Shan F et al (2016b) Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy. Hum Vaccin Immunother 12(1):85–96. https://doi.org/10.1080/21645515.2015.1030549

    Article  PubMed  Google Scholar 

  • Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, Tian X (2021) Mesenchymal stem cell-derived exosomes: a promising biological tool in nanomedicine. Front Pharmacol 11:1954

    Article  Google Scholar 

  • Wharton T (1656) Adenographia (trans: Freer S). Oxford University Press, Oxford, UK, pp 242–248 (1996)

    Google Scholar 

  • Xu Y, Meng H, Li C, Hao M, Wang Y, Yu Z, Li Q, Han J, Zhai Q, Qiu L (2010) Umbilical cord-derived mesenchymal stem cells isolated by a novel explantation technique can differentiate into functional endothelial cells and promote revascularization. Stem Cells Dev 19:1511–1522

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Liu Y, Sun Y, Wang B, Xiong Y, Lin W, Wei A et al (2017) Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Res Ther 8:275. https://doi.org/10.1186/s13287-017-0716-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XF, He X, He J, Zhang LH, Su XJ, Dong ZY, Xu YJ et al (2011) High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J Biomed Sci 18:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, Lim SK (2013) Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev 65:336–341

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu Y, Chen Y, Yuan L, Liu H, Wang J, Liu Q, Zhang Y (2020a) Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues. Stem Cells Int 2020:8810813

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ding J, Ren S, Wang W, Yang Y, Li S, Meng M et al (2020b) Intravenous infusion of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells as a potential treatment for patients with COVID-19 pneumonia. Stem Cell Res Ther 11:207. https://doi.org/10.1186/s13287-020-01725-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Fan W, Prasadam I, Crawford R, Xiao Y (2015) Implantation of osteogenic differentiated donor mesenchymal stem cells causes recruitment of host cells. J Tissue Eng Regen Med 9(2):118–126. https://doi.org/10.1002/term.1619

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Guo S, Tong S, Sun Q, Li F, Zhang X, Qiao Y et al (2018) Immunosuppression of human adipose-derived stem cells on T cell subsets via the reduction of NF-kappaB activation mediated by PD-L1/PD-1 and Gal-9/TIM-3 pathways. Stem Cells Dev 27:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yamamoto Y, Xiao Z, Ochiya T (2019) The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med 8:1025

    Article  CAS  PubMed Central  Google Scholar 

  • Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Heydarkhan-Hagvall S, Hedrick M, Benhaim P, Zuk P (2013) Manual isolation of adipose-derived stem cells from human lipoaspirates. J Vis Exp 2013:e50585

    Google Scholar 

  • Zolbin MM, Aliakbari F, Mehdizadeh S, Dayabari SS, Shojaie L, Haider KH, Johnson J (2021) Chapter 4. Ovarian stem cells and progenitors and their regenerative capabilities. In: Stem cells: from potential to promise. Springer, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kamal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kamal, M., Kassem, D., Haider, K.H. (2022). Sources and Therapeutic Strategies of Mesenchymal Stem Cells in Regenerative Medicine. In: Haider, K.H. (eds) Handbook of Stem Cell Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6016-0_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6016-0

  • Online ISBN: 978-981-16-6016-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics