Skip to main content

Dye Degradation by Fungi

  • Chapter
  • First Online:
Dye Biodegradation, Mechanisms and Techniques

Abstract

Dye pollution is rising drastically due to massive use in different types of industrial activities. Synthetic dye pollution is the major issue of the environment at present due to their recalcitrant, toxic, carcinogenic and mutagenic behavior. Dye pollution affects aquatic life by impairing the sunlight permeability and can damage the aquatic ecosystem terribly. Therefore, treatment of dye-containing wastewater is required. Bioremediation seems as safe and ecofriendly approach for wastewater treatment. Fungi have massive dye decolorization potential and can be used for treatment. Studies have reported many fungal species for decolorization of dye so, for better understanding of their application in wastewater treatment process, the involved mechanism in dye decolorization should be known. This review focused on application process of fungi in dye decolorization, role of enzyme, protein, genes and surface functional group in degradation and biosorption process. The toxicity of fungal degraded dye end products is also reviewed in this chapter which is an important aspect in fungal application for dye contaminated wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd El-Rahim WM, Moawad H, Azeiz AZA, Sadowsky MJ (2017) Optimization of conditions for decolorization of azo-based textile dyes by multiple fungal species. J Biotechnol 260:11–17

    Article  CAS  Google Scholar 

  2. Abe FR, Machado AL, Soares AM, de Oliveira DP, Pestana JL (2019) Life history and behavior effects of synthetic and natural dyes on Daphnia magna. Chemosphere 236:124390

    Google Scholar 

  3. Agrawal K, Verma P (2019) Column bioreactor of immobilized Stropharia sp. ITCC 8422 on natural biomass support of L. cylindrica for biodegradation of anthraquinone violet R. Bioresour Technol Rep 8:100345

    Google Scholar 

  4. Akpinar M, Urek RO (2017) Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization. 3 Biotech 7(2):98

    Google Scholar 

  5. Alam R, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Kim S et al (2020) Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment. J Hazard Mater 124176

    Google Scholar 

  6. Almeida EJR, Corso CR (2014) Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 112:317–322

    Article  CAS  Google Scholar 

  7. Andleeb S, Atiq N, Robson GD, Ahmed S (2012) An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ Sci Pollut Res 19(5):1728–1737

    Article  CAS  Google Scholar 

  8. Asgher M, Yasmeen Q, Iqbal HMN (2013) Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J Biol Sci 20(4):347–352

    Article  CAS  Google Scholar 

  9. Asses N, Ayed L, Hkiri N, Hamdi M (2018) Congo red decolorization and detoxification by Aspergillus niger: removal mechanisms and dye degradation pathway. BioMed Res Int 2018

    Google Scholar 

  10. Bae JS, Freeman HS (2007) Aquatic toxicity evaluation of new direct dyes to the Daphnia magna. Dyes Pigm 73(1):81–85

    Article  CAS  Google Scholar 

  11. Baldrian P, Merhautová V, Gabriel J, Nerud F, Stopka P, Hrubý M, Beneš MJ (2006) Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Appl Catal B: Environ 66(3–4):258–264

    Google Scholar 

  12. Bankole PO, Adekunle AA, Govindwar SP (2018) Enhanced decolorization and biodegradation of acid red 88 dye by newly isolated fungus, Achaetomium strumarium. J Environ Chem Eng 6(2):1589–1600

    Article  CAS  Google Scholar 

  13. Bankole PO, Adekunle AA, Obidi OF, Chandanshive VV, Govindwar SP (2018) Biodegradation and detoxification of Scarlet RR dye by a newly isolated filamentous fungus, Peyronellaea Prosopidis. Sustain Environ Res 28(5):214–222

    Article  CAS  Google Scholar 

  14. Bankole PO, Adekunle AA, Obidi OF, Olukanni OD, Govindwar SP (2017) Degradation of indigo dye by a newly isolated yeast, Diutina rugosa from dye wastewater polluted soil. J Environ Chem Eng 5(5):4639–4648

    Article  CAS  Google Scholar 

  15. Barapatre A, Aadil KR, Jha H (2017) Biodegradation of malachite green by the ligninolytic fungus Aspergillus flavus. CLEAN–Soil Air Water 45(4):1600045

    Google Scholar 

  16. Bazin I, Hassine AIH, Hamouda YH, Mnif W, Bartegi A, Lopez-Ferber M, Gonzalez C et al (2012) Estrogenic and anti-estrogenic activity of 23 commercial textile dyes. Ecotoxicol Environ Saf 85:131–136

    Google Scholar 

  17. Behrens CJ, Zelena K, Berger RG (2016) Comparative cold shock expression and characterization of fungal dye-decolorizing peroxidases. Appl Biochem Biotechnol 179(8):1404–1417

    Article  CAS  Google Scholar 

  18. Biko OD, Viljoen-Bloom M, Van Zyl WH (2020) Microbial lignin peroxidases: applications, production challenges and future perspectives. Enzym Microb Technol 109669

    Google Scholar 

  19. Bosco F, Mollea C, Ruggeri B (2017) Decolorization of Congo Red by Phanerochaete chrysosporium: the role of biosorption and biodegradation. Environ Technol 38(20):2581–2588

    Article  CAS  Google Scholar 

  20. Bouacem K, Rekik H, Jaouadi NZ, Zenati B, Kourdali S, El Hattab M, Bouanane-Darenfed A (2018) Purification and characterization of two novel peroxidases from the dye-decolorizing fungus Bjerkandera adusta strain CX-9. Int J Biol Macromol 106:636–646

    Google Scholar 

  21. Burke R, Cairney J (2002) Laccases and other polyphenol oxidases in ecto-and ericoid mycorrhizal fungi. Mycorrhiza 12(3):105–116

    Article  CAS  Google Scholar 

  22. Casieri L, Anastasi A, Prigione V, Varese GC (2010) Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Antonie Van Leeuwenhoek 98(4):483–504

    Article  CAS  Google Scholar 

  23. Cha CJ, Doerge DR, Cerniglia CE (2001) Biotransformation of Malachite Green by the FungusCunninghamella elegans. Appl Environ Microbiol 67(9):4358–4360

    Article  CAS  Google Scholar 

  24. Chairin T, Nitheranont T, Watanabe A, Asada Y, Khanongnuch C, Lumyong S (2013) Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes Polyzona. Appl Biochem Biotechnol 169(2):539–545

    Article  CAS  Google Scholar 

  25. Chakraborty S, Basak B, Dutta S, Bhunia B, Dey A (2013) Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Biores Technol 147:662–666

    Article  CAS  Google Scholar 

  26. Chawachart N, Khanongnuch C, Watanabe T, Lumyong S (2004) Rice bran as an efficient substrate for laccase production from thermotolerant basidiomycete Coriolus versicolor strain RC3. Fungal Divers 15:23–32

    Google Scholar 

  27. Chequer FMD, Angeli JPF, Ferraz ERA, Tsuboy MS, Marcarini JC, Mantovani MS, de Oliveira DP (2009) The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutat Res Genet Toxicol Environ Mutagen 676(1–2):83–86

    Article  CAS  Google Scholar 

  28. Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev 107:232–249

    Article  CAS  Google Scholar 

  29. Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:809–827

    Article  CAS  Google Scholar 

  30. Ciullini I, Tilli S, Scozzafava A, Briganti F (2008) Fungal laccase, cellobiose dehydrogenase, and chemical mediators: combined actions for the decolorization of different classes of textile dyes. Biores Technol 99(15):7003–7010

    Article  CAS  Google Scholar 

  31. Couto SR (2009) Dye removal by immobilised fungi. Biotechnol Adva 27(3):227–235

    Google Scholar 

  32. Cuamatzi-Flores J, Esquivel-Naranjo E, Nava-Galicia S, López-Munguía A, Arroyo-Becerra A, Villalobos-López MA, Bibbins-Martínez M (2019) Differential regulation of Pleurotus ostreatus dye peroxidases gene expression in response to dyes and potential application of recombinant Pleos-DyP1 in decolorization. PloS One 14(1):e0209711

    Google Scholar 

  33. Culp SJ, Mellick PW, Trotter RW, Greenlees KJ, Kodell RL, Beland FA (2006) Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem Toxicol 44(8):1204–1212

    Article  CAS  Google Scholar 

  34. de Lima ROA, Bazo AP, Salvadori DMF, Rech CM, de Palma Oliveira D, de Aragão Umbuzeiro G (2007) Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res Genet Toxicol Environ Mutagen 626(1–2):53–60

    Google Scholar 

  35. Deska M, Kończak B (2019) Immobilized fungal laccase as “green catalyst” for the decolourization process–state of the art. Process Biochem 84:112–123

    Article  CAS  Google Scholar 

  36. Değerli E, Yangın S, Cansaran-Duman D (2019) Determination of the effect of RBBR on laccase activity and gene expression level of fungi in lichen structure. 3 Biotech 9(8):297

    Google Scholar 

  37. Ding Y, Sun C, Xu X (2009) Simultaneous identification of nine carcinogenic dyes from textiles by liquid chromatography/electrospray ionization mass spectrometry via negative/positive ion switching mode. Eur J Mass Spectrom 15(6):705–713

    Article  CAS  Google Scholar 

  38. Đurđić KI, Ostafe R, Prodanović O, Đelmaš AĐ, Popović N, Fischer R, Prodanović R et al (2020) Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Front Environ Sci Eng 15(2):1–10

    Google Scholar 

  39. Elmorsi TM, Riyad YM, Mohamed ZH, Abd El Bary HM (2010) Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. J Hazard Mater 174(1–3):352–358

    Article  CAS  Google Scholar 

  40. Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 6(1):e00394

    Google Scholar 

  41. Fan F, Zhuo R, Sun S, Wan X, Jiang M, Zhang X, Yang Y (2011) Cloning and functional analysis of a new laccase gene from Trametes sp. 48424 which had the high yield of laccase and strong ability for decolorizing different dyes. Bioresource Technol 102(3):3126–3137

    Google Scholar 

  42. Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK (1989) Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb Technol 11(6):322–328

    Article  CAS  Google Scholar 

  43. Ferraz ER, Grando MD, Oliveira DP (2011) The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri. J Hazard Mater 192(2):628–633

    Article  CAS  Google Scholar 

  44. Flores JC, Esquivel-Naranjo E, Nava-Galicia S, López-Munguía A, Arroyo-Becerra A, Villalobos-López MA, Bibbins-Martínez M (2019) Differential regulation of Pleurotus ostreatus dye peroxidases gene expression in response to dyes and potential application of recombinant Pleos-DyP1 in decolorization. Plos one 14(1):e0209711

    Google Scholar 

  45. Fonseca MI, Molina MA, Winnik DL, Busi MV, Fariña JI, Villalba LL, Zapata PD (2018) Isolation of a laccase-coding gene from the lignin-degrading fungus Phlebia brevispora BAFC 633 and heterologous expression in Pichia pastoris. J Appl Microbiol 124(6):1454–1468

    Google Scholar 

  46. Furukawa T, Bello FO, Horsfall L (2014) Microbial enzyme systems for lignin degradation and their transcriptional regulation. Front Biol 9(6):448–471

    Article  CAS  Google Scholar 

  47. Gomaa OM (2012) Ethanol induced response in Phanerochaete chrysosporium and its role in the decolorization of triarylmethane dye. Ann Microbiol 62(4):1403–1409

    Article  CAS  Google Scholar 

  48. Güngördü A, Birhanli A, Ozmen M (2013) Biochemical response to exposure to six textile dyes in early developmental stages of Xenopus laevis. Environ Sci Pollut Res 20(1):452–460

    Article  CAS  Google Scholar 

  49. Harazono K, Watanabe Y, Nakamura K (2003) Decolorization of azo dye by the white-rot basidiomycete Phanerochaete sordida and by its manganese peroxidase. J Biosci Bioeng 95(5):455–459

    Article  CAS  Google Scholar 

  50. He XL, Song C, Li YY, Wang N, Xu L, Han X, Wei DS (2018) Efficient degradation of azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotoxicol Environ Saf 150:232–239

    Article  CAS  Google Scholar 

  51. Heinzkill M, Bech L, Halkier T, Schneider P, Anke T (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl Environ Microbiol 64(5):1601–1606

    Article  CAS  Google Scholar 

  52. Hofrichter M (2002) lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30(4):454–466

    Article  CAS  Google Scholar 

  53. Hu QH, Qiao SZ, Haghseresht F, Wilson MA, Lu GQ (2006) Adsorption study for removal of basic red dye using bentonite. Ind Eng Chem Res 45(2):733–738

    Google Scholar 

  54. Huang S, Huang D, Qitang WU, Meifang HOU, Xiaoyan TANG, Jian ZHOU (2020) Effect of environmental C/N ratio on activities of lignin-degrading enzymes produced by Phanerochaete chrysosporium. Pedosphere 30(2):285–292

    Article  Google Scholar 

  55. Huang Q, Wang C, Zhu L, Zhang D, Pan C (2020) Purification, characterization, and gene cloning of two laccase isoenzymes (Lac1 and Lac2) from Trametes hirsuta MX2 and their potential in dye decolorization. Mol Biol Rep 47(1):477–488

    Article  CAS  Google Scholar 

  56. Huy ND, Ha DTT, Khoo KS, Lan PTN, Quang HT, Loc NH, Show PL et al (2020) Synthetic dyes removal by Fusarium oxysporum HUIB02 and stimulation effect on laccase accumulation. Environ Technol Innov 19:101027

    Google Scholar 

  57. IARC (1993) Monographs on the evaluation of carcinogenic risks to humans, occupational exposures of hairdressers and barbersand personal use of hair colourants; some hair dyes, cosmetic colourants, industrial dyestuffs and aromatic amines, vol 57

    Google Scholar 

  58. Iark D, dos Reis Buzzo AJ, Garcia JAA, Côrrea VG, Helm CV, Corrêa RCG, Peralta RM et al (2019) Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresour Technol 289:121655

    Google Scholar 

  59. Jadhav UU, Dawkar VV, Telke AA, Govindwar SP (2009) Decolorization of Direct Blue GLL with enhanced lignin peroxidase enzyme production in Comamonas sp UVS. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 84(1):126–132

    CAS  Google Scholar 

  60. Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol 52(1):1–12

    Article  CAS  Google Scholar 

  61. Jasińska A, Paraszkiewicz K, Sip A, Długoński J (2015) Malachite green decolorization by the filamentous fungus Myrothecium roridum–mechanistic study and process optimization. Biores Technol 194:43–48

    Article  CAS  Google Scholar 

  62. Jin X, Ning Y (2013) Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets. J Hazard Mater 262:870–877

    Article  CAS  Google Scholar 

  63. Kabbout R, Taha S (2014) Biodecolorization of textile dye effluent by biosorption on fungal biomass materials. Phys Procedia 55:437–444

    Article  CAS  Google Scholar 

  64. Karimi A, Aghbolaghy M, Khataee A, Shoa Bargh S (2012) Use of enzymatic bio-Fenton as a new approach in decolorization of malachite green. Sci World J 2012

    Google Scholar 

  65. Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35(1):127–141

    Article  CAS  Google Scholar 

  66. Khan R, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12(1):75–97

    Article  CAS  Google Scholar 

  67. Krishnamoorthy R, Jose PA, Ranjith M, Anandham R, Suganya K, Prabhakaran J, Kumutha K (2018) Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3. J Environ Chem Eng 6(1):588–595

    Google Scholar 

  68. Kumar V, Dwivedi SK (2021b) Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. Environ Sci Pollut Res 28:10375–10412

    Article  CAS  Google Scholar 

  69. Kumar V, Singh S, Singh G, Dwivedi SK (2019) Exploring the cadmium tolerance and removal capability of a filamentous fungus fusarium solani. Geomicrobiol J 36(9):782–791

    Google Scholar 

  70. Kumar CG, Mongolla P, Joseph J, Sarma VUM (2012) Decolorization and biodegradation of triphenylmethane dye, brilliant green, by Aspergillus sp. isolated from Ladakh, India. Process Biochem 47(9):1388–1394

    Google Scholar 

  71. Kumar V, Dwivedi SK (2019a) Hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater. Ecotoxicol Environ Saf 185:109734

    Google Scholar 

  72. Kumar V, Dwivedi SK (2019b) Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere 237:124567

    Google Scholar 

  73. Kumar V, Dwivedi SK (2020) Multimetal tolerant fungus Aspergillus flavus CR500 with remarkable stress response, simultaneous multiple metal/loid removal ability and bioremediation potential of wastewater. Environ Technol Innov 101075

    Google Scholar 

  74. Kumar V, Dwivedi SK (2021a) A review on accessible techniques for removal of hexavalent Chromium and divalent Nickel from industrial wastewater: recent research and future outlook. J Clean Prod 295:126229. https://doi.org/10.1016/j.jclepro.2021.126229

  75. Kumar V, Dwivedi SK (2021c) Bioremediation mechanism and potential of copper by actively growing fungus Trichoderma lixii CR700 isolated from electroplating wastewater. J Environ Manag 277:111370

    Google Scholar 

  76. Kunjadia PD, Sanghvi GV, Kunjadia AP, Mukhopadhyay PN, Dave GS (2016) Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. SpringerPlus 5(1):1487

    Google Scholar 

  77. Lade HS, Waghmode TR, Kadam AA, Govindwar SP (2012) Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. Int Biodeterior Biodegrad 72:94–107

    Article  CAS  Google Scholar 

  78. Lallawmsanga AKP, Singh BP (2019) Exploration of macrofungi in sub-tropical semi-evergreen Indian forest ecosystems. Biol Macrofungi 1

    Google Scholar 

  79. Lee AH, Jang Y, Kim GH, Kim JJ, Lee SS, Ahn BJ (2017) Decolorizing an anthraquinone dye by Phlebia brevispora: Intra-species characterization. Eng Life Sci 17(2):125–131

    Article  CAS  Google Scholar 

  80. Li WY, Chen FF, Wang SL (2010) Binding of reactive brilliant red to human serum albumin: insights into the molecular toxicity of sulfonic azo dyes. Protein Pept Lett 17(5):621–629

    Article  CAS  Google Scholar 

  81. Li HX, Xu B, Tang L, Zhang JH, Mao ZG (2015) Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10. Int Biodeterior Biodegradation 103:30–37

    Google Scholar 

  82. Liu S, Xu X, Kang Y, Xiao Y, Liu H (2020) Degradation and detoxification of azo dyes with recombinant ligninolytic enzymes from Aspergillus sp. with secretory overexpression in Pichia pastoris. R Soc Open Sci 7(9):200688

    Google Scholar 

  83. Maas R, Chaudhari S (2005) Adsorption and biological decolourization of azo dye Reactive Red 2 in semicontinuous anaerobic reactors. Process Biochem 40(2):699–705

    Article  CAS  Google Scholar 

  84. Mansour HB, Ayed-Ajmi Y, Mosrati R, Corroler D, Ghedira K, Barillier D, Chekir-Ghedira L (2010) Acid violet 7 and its biodegradation products induce chromosome aberrations, lipid peroxidation, and cholinesterase inhibition in mouse bone marrow. Environ Sci Pollut Res 17(7):1371–1378

    Article  CAS  Google Scholar 

  85. Miki Y, Pogni R, Acebes S, Lucas F, Fernandez-Fueyo E, Baratto MC, Basosi R et al (2013) Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism. Biochem J 452(3):575–584

    Google Scholar 

  86. Moldes D, Fernández-Fernández M, Sanromán M (2012) Role of laccase and low molecular weight metabolites from Trametes versicolor in dye decolorization. Sci World J 2012

    Google Scholar 

  87. Navada KK, Sanjeev G, Kulal A (2018) Enhanced biodegradation and kinetics of anthraquinone dye by laccase from an electron beam irradiated endophytic fungus. Int Biodeterior Biodegrad 132:241–250

    Article  CAS  Google Scholar 

  88. Nestmann ER, Douglas GR, Matula TI, Grant CE, Kowbel DJ (1979) Mutagenic activity of rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA damage in Chinese hamster ovary cells. Can Res 39(11):4412–4417

    CAS  Google Scholar 

  89. Novotný Č, Dias N, Kapanen A, Malachová K, Vándrovcová M, Itävaara M, Lima N (2006) Comparative use of bacterial, algal and protozoan tests to study toxicity of azo-and anthraquinone dyes. Chemosphere 63(9):1436–1442

    Article  CAS  Google Scholar 

  90. Oliveira SF, da Luz JMR, Kasuya MCM, Ladeira LO, Junior AC (2018) Enzymatic extract containing lignin peroxidase immobilized on carbon nanotubes: potential biocatalyst in dye decolourization. Saudi J Biol Sci 25(4):651–659

    Article  CAS  Google Scholar 

  91. Oliveira GAR, Ferraz ERA, Chequer FMD, Grando MD, Angeli JPF, Tsuboy MS, Zanoni MVB (2010) Chlorination treatment of aqueous samples reduces, but does not eliminate, the mutagenic effect of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1. Mutat Res Genet Toxicol Environ Mutagen 703(2):200–208

    Google Scholar 

  92. Pan H, Xu X, Wen Z, Kang Y, Wang X, Ren Y, Huang D (2017) Decolorization pathways of anthraquinone dye Disperse Blue 2BLN by Aspergillus sp. XJ-2 CGMCC12963. Bioengineered 8(5):630–641

    Google Scholar 

  93. Pandi A, Kuppuswami GM, Ramudu KN, Palanivel S (2019) A sustainable approach for degradation of leather dyes by a new fungal laccase. J Clean Prod 211:590–597

    Article  CAS  Google Scholar 

  94. Parshetti GK, Kalme SD, Gomare SS, Govindwar SP (2007) Biodegradation of Reactive blue-25 by Aspergillus ochraceus NCIM-1146. Biores Technol 98(18):3638–3642

    Article  CAS  Google Scholar 

  95. Piontek K, Glumoff T, Winterhalter K (1993) Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 Å resolution. FEBS Lett 315(2):119–124

    Google Scholar 

  96. Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2(1):23

    Article  Google Scholar 

  97. Poulos TL, Edwards SL, Wariishi H, Gold MH (1993) Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem 268(6):4429–4440

    Article  CAS  Google Scholar 

  98. Purnomo AS, Mauliddawati VT, Khoirudin M, Yonda AF, Nawfa R, Putra SR (2019) Bio-decolorization and novel bio-transformation of methyl orange by brown-rot fungi. Int J Environ Sci Technol 16(11):7555–7564

    Article  CAS  Google Scholar 

  99. Qin P, Wu Y, Adil B, Wang J, Gu Y, Yu X, Chen X et al (2019) Optimization of Laccase from Ganoderma lucidum decolorizing Remazol Brilliant Blue R and Glac1 as main laccase-contributing gene. Molecules 24(21):3914

    Google Scholar 

  100. Rajhans G, Sen SK, Barik A, Raut S (2020) Elucidation of fungal dye‐decolorizing peroxidase (DyP) and ligninolytic enzyme activities in decolorization and mineralization of azo dyes. J Appl Microbiol

    Google Scholar 

  101. Rawat AP, Kumar V, Singh DP (2020) A combined effect of adsorption and reduction potential of biochar derived from Mentha plant waste on removal of methylene blue dye from aqueous solution. Sep Sci Technol 55(5):907–921

    Article  CAS  Google Scholar 

  102. Rizqi HD, Purnomo AS (2017) The ability of brown-rot fungus Daedalea dickinsii to decolorize and transform methylene blue dye. World J Microbiol Biotechnol 33(5):92

    Article  CAS  Google Scholar 

  103. Robens JF, Dill GS, Ward JM, Joiner JR, Griesemer RA, Douglas JF (1980) Thirteen-week subchronic toxicity studies of Direct Blue 6, Direct Black 38, and Direct Brown 95 dyes. Toxicol Appl Pharmacol 54(3):431–442

    Article  CAS  Google Scholar 

  104. Saravanakumar T, Palvannan T, Kim DH, Park SM (2013) Manganese peroxidase H4 isozyme mediated degradation and detoxification of triarylmethane dye malachite green: optimization of decolorization by response surface methodology. Appl Biochem Biotechnol 171(5):1178–1193

    Article  CAS  Google Scholar 

  105. Sen SK, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30(3):112–133

    Article  Google Scholar 

  106. Shanmugam S, Ulaganathan P, Swaminathan K, Sadhasivam S, Wu YR (2017) Enhanced biodegradation and detoxification of malachite green by Trichoderma asperellum laccase: degradation pathway and product analysis. Int Biodeterior Biodegrad 125:258–268

    Article  CAS  Google Scholar 

  107. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valorization 10(2):235–251

    Article  CAS  Google Scholar 

  108. Si J, Cui BK, Dai YC (2013) Decolorization of chemically different dyes by white-rot fungi in submerged cultures. Ann Microbiol 63(3):1099–1108

    Article  CAS  Google Scholar 

  109. Singh G, Dwivedi SK (2020) Decolorization and degradation of Direct Blue-1 (Azo dye) by newly isolated fungus Aspergillus terreus GS28, from sludge of carpet industry. Environ Technol Innov 100751

    Google Scholar 

  110. Song L, Shao Y, Ning S, Tan L (2017) Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes. Biores Technol 233:21–29

    Article  CAS  Google Scholar 

  111. Sosa-Martínez JD, Balagurusamy N, Montañez J, Peralta RA, Moreira RDFPM, Bracht A, Morales-Oyervides L et al (2020) Synthetic dyes biodegradation by fungal ligninolytic enzymes: process optimization, metabolites evaluation and toxicity assessment. J Hazard Mater 400:123254

    Google Scholar 

  112. Spadaro JT, Renganathan V (1994) Peroxidase-catalyzed oxidation of azo dyes: mechanism of Disperse Yellow 3 degradation. Arch Biochem Biophys 312(1):301–307

    Article  CAS  Google Scholar 

  113. Stammati A, Nebbia C, De Angelis I, Albo AG, Carletti M, Rebecchi C, Dacasto M et al (2005) Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicol in vitro 19(7):853–858

    Google Scholar 

  114. Stiborová M, Martínek V, Rýdlová H, Hodek P, Frei E (2002) Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Can Res 62(20):5678–5684

    Google Scholar 

  115. Sudha M, Saranya A, Selvakumar G, Sivakumar N (2014) Microbial degradation of azo dyes: a review. Int J Curr Microbiol App Sci 3(2):670–690

    CAS  Google Scholar 

  116. Tang W, Xu X, Ye BC, Cao P, Ali A (2019) Decolorization and degradation analysis of Disperse Red 3B by a consortium of the fungus Aspergillus sp. XJ-2 and the microalgae Chlorella sorokiniana XJK. RSC Adva 9(25):14558–14566

    Google Scholar 

  117. Tapia-Tussell R, Pereira-Patrón A, Alzate-Gaviria L, Lizama-Uc G, Pérez-Brito D, Solis-Pereira S (2020) Decolorization of textile effluent by Trametes hirsuta Bm-2 and lac-T as possible main laccase-contributing gene. Curr Microbiol 1–9

    Google Scholar 

  118. Teerapatsakul C, Parra R, Keshavarz T, Chitradon L (2017) Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate. Int Biodeterior Biodegrad 120:52–57

    Article  CAS  Google Scholar 

  119. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249

    Article  CAS  Google Scholar 

  120. Tochhawng L, Mishra VK, Passari AK, Singh BP (2019). Endophytic Fungi: role in dye Decolorization. Advances in endophytic fungal research. Springer, Cham, pp 1–15

    Google Scholar 

  121. Topaç Şağban FATMA, Dindar E, Uçaroğlu S, Baskaya H (2009) Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation processes in soil

    Google Scholar 

  122. Tsuboy MS, Angeli JPF, Mantovani MS, Knasmüller S, Umbuzeiro GA, Ribeiro LR (2007) Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2. Toxicol in Vitro 21(8):1650–1655

    Article  CAS  Google Scholar 

  123. Varjani S, Rakholiya P, Ng HY, You S, Teixeira JA (2020) Microbial degradation of dyes: an overview. Bioresour Technol 123728

    Google Scholar 

  124. Venturini S, Tamaro M (1979) Mutagenicity of anthraquinone and azo dyes in Ames’ Salmonella typhimurium test. Mutat Res Genet Toxicol 68(4):307–312

    Article  CAS  Google Scholar 

  125. Voběrková S, Solčány V, Vršanská M, Adam V (2018) Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere 202:694–707

    Google Scholar 

  126. Wang N, Chu Y, Zhao Z, Xu X (2017) Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. Int Biodeterior Biodegrad 117:236–244

    Article  CAS  Google Scholar 

  127. Wang X, Wang Y, Ning S, Shi S, Tan L (2020) Improving Azo dye decolorization performance and halotolerance of Pichia occidentalis A2 by static magnetic field and possible mechanisms through comparative transcriptome analysis. Front Microbiol 11:712

    Article  Google Scholar 

  128. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22(1–2):161–187

    Article  CAS  Google Scholar 

  129. Xu H, Guo MY, Gao YH, Bai XH, Zhou XW (2017) Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol. BMC Biotechno 17(1):1–12

    Google Scholar 

  130. Zhang H, Zhang X, Geng A (2020) Expression of a novel manganese peroxidase from Cerrena unicolor BBP6 in Pichia pastoris and its application in dye decolorization and PAH degradation. Biochem Eng J 153:107402

    Google Scholar 

  131. Zhang X, Liu Y, Yan K, Wu H (2007) Decolorization of anthraquinone-type dye by bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp. IMER1. J Biosci Bioeng 104(2):104–110

    Google Scholar 

Download references

Acknowledgements

V. Kumar and G. Singh thankful to University Grants Commission (UGC), Government of India for providing UGC-Non NET fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Singh, G., Dwivedi, S.K. (2022). Dye Degradation by Fungi. In: Muthu, S.S., Khadir, A. (eds) Dye Biodegradation, Mechanisms and Techniques. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-5932-4_5

Download citation

Publish with us

Policies and ethics