Skip to main content

Development and Characterization of Novel Mn–Fe–Sn Ternary Nanoparticle by Sol–Gel Technique

  • Conference paper
  • First Online:
Advances in Civil Engineering

Abstract

Iron, tin, and manganese oxides have many potentials to remove cations because of their structural uniqueness, especially in the nano-form. In the current study, the sol–gel method was employed to form Mn–Fe–Sn ternary oxides nanoparticles at a pH range of 3.0–4.0. The nanoparticles have been characterized by SEM, FTIR, EDX, and XRD. SEM microphotographs revealed that the surface of Mn–Fe–Sn nanoparticles is porous, irregular, and rough. Mn, Fe, Sn, and O had ended up being found in the Mn–Fe–Sn surface by EDX study, weighing 5.24%, 2.97%, 3.04%, and 88.75%, respectively. Moreover, Mn–Fe–Sn nanoparticles have been found in the crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boddu VM, Abburi K, Talbott JL, Smith ED (2003) Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ Sci Technol 37:4449–4456. https://doi.org/10.1021/es021013a

    Article  Google Scholar 

  2. Ayub S, Siddique AA, Khursheed MS, Zarei A, Alam I, Asgari E, Changani F (2020) Removal of heavy metals (Cr, Cu and Zn) from electroplating wastewater by electrocoagulation and adsorption processes. Desalin WATER Treat 179:263–271. https://doi.org/10.5004/dwt.2020.25010

    Article  Google Scholar 

  3. Shin K-Y, Hong J-Y, Jang J (2011) Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: isotherms and kinetic study. J Hazard Mater 190:36–44. https://doi.org/10.1016/j.jhazmat.2010.12.102

  4. Al-Saydeh SA, El-Naas MH, Zaidi SJ (2017) Copper removal from industrial wastewater: a comprehensive review. J Ind Eng Chem 56:35–44. https://doi.org/10.1016/j.jiec.2017.07.026

  5. Sumaila A, Ndamitso MM, Iyaka YA, Abdulkareem AS, Tijani JO, Idris MO (2020) Extraction and characterization of chitosan from crab shells: kinetic and thermodynamic studies of arsenic and copper adsorption from electroplating wastewater. Iraqi J Sci 61:2156–2171. https://doi.org/10.24996/ijs.2020.61.9.2

  6. Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137:762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060

    Article  Google Scholar 

  7. Iram M, Guo C, Guan Y, Ishfaq A, Liu H (2010) Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J Hazard Mater 181:1039–1050. https://doi.org/10.1016/j.jhazmat.2010.05.119

  8. Gupta VK, Jain R, Malathi S, Nayak A (2010) Adsorption–desorption studies of indigocarmine from industrial effluents by using deoiled mustard and its comparison with charcoal. J Colloid Interface Sci 348:628–633. https://doi.org/10.1016/j.jcis.2010.04.085

    Article  Google Scholar 

  9. Huang X, Yu J, Shi B, Hao H, Wang C, Jia Z, Wang Q (2020) Rapid prediction of the activated carbon adsorption ratio by a regression model. Chemosphere 245:125675. https://doi.org/10.1016/j.chemosphere.2019.125675

  10. Tsade H, Murthy HCA, Muniswamy D (2020) Bio-sorbents from agricultural wastes for eradication of heavy metals: a review. J Mater Environ Sci 11:1719–1735

    Google Scholar 

  11. Vakili M, Deng S, Cagnetta G, Wang W, Meng P, Liu D, Yu G (2019) Regeneration of chitosan-based adsorbents used in heavy metal adsorption: a review. Sep Purif Technol 224:373–387. https://doi.org/10.1016/j.seppur.2019.05.040

    Article  Google Scholar 

  12. Choi Y-L, Choi J-S, Lingamdinne LP, Chang Y-Y, Koduru JR, Ha J-H, Yang J-K (2019) Removal of U(VI) by sugar-based magnetic pseudo–graphene oxide and its application to authentic groundwater using electromagnetic system. Environ Sci Pollut Res 26:22323–22337. https://doi.org/10.1007/s11356-019-05260-5

    Article  Google Scholar 

  13. Zhang M, Li Y, Uchaker E, Candelaria S, Shen L, Wang T, Cao G (2013) Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy 2:769–778. https://doi.org/10.1016/j.nanoen.2013.01.009

    Article  Google Scholar 

  14. Liu W, Cai J, Li Z (2015) Self-assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis. ACS Sustain Chem Eng 3:277–282. https://doi.org/10.1021/sc5006473

    Article  Google Scholar 

  15. Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 270:105–110. https://doi.org/10.1016/j.desal.2010.11.028

    Article  Google Scholar 

  16. Zhang YC, Li J, Zhang M, Dionysiou DD (2011) Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ Sci Technol 45:9324–9331. https://doi.org/10.1021/es202012b

    Article  Google Scholar 

  17. Yu Z, Zhang X, Huang Y (2013) Magnetic Chitosan–Iron(III) hydrogel as a fast and reusable adsorbent for Chromium(VI) removal. Ind Eng Chem Res 52:11956–11966. https://doi.org/10.1021/ie400781n

    Article  Google Scholar 

  18. Wang P, Lo IMC (2009) Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Res 43:3727–3734. https://doi.org/10.1016/j.watres.2009.05.041

    Article  Google Scholar 

  19. Yin L, Pan Y, Li M, Zhao Y, Luo S (2020) Facile and scalable synthesis of α-Fe2O3/γ-Fe2O3/Fe/C nanocomposite as advanced anode materials for lithium/sodium ion batteries. Nanotechnology 31:155402. https://doi.org/10.1088/1361-6528/ab647f

  20. Gheju M, Balcu I, Vancea C (2016) An investigation of Cr(VI) removal with metallic iron in the co-presence of sand and/or MnO2. J Environ Manage 170:145–151. https://doi.org/10.1016/j.jenvman.2016.01.013

    Article  Google Scholar 

  21. Wang H, Yuan X, Wu Y, Chen X, Leng L, Wang H, Li H, Zeng G (2015) Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem Eng J 262:597–606. https://doi.org/10.1016/j.cej.2014.10.020

    Article  Google Scholar 

  22. de Mello LB, Varanda LC, Sigoli FA, Mazali IO (2019) Co-precipitation synthesis of (Zn-Mn)-Co-doped magnetite nanoparticles and their application in magnetic hyperthermia. J Alloys Compd 779:698–705. https://doi.org/10.1016/j.jallcom.2018.11.280

    Article  Google Scholar 

  23. Semenova AA, Semenov AP, Goodilin EA, Semenova IA (2019) Synthesis of plasmonic photonic crystal SiO2–Ag nanostructures by ion beam deposition of silver clusters onto silica microspheres. Bull Russ Acad Sci Phys 83:1415–1418. https://doi.org/10.3103/S1062873819110200

    Article  Google Scholar 

  24. Amir M, Gungunes H, Baykal A, Almessiere MA, Sözeri H, Ercan I, Sertkol M, Asiri S, Manikandan A (2018) Effect of annealing temperature on magnetic and Mössbauer properties of ZnFe2O4 nanoparticles by Sol-gel approach. J Supercond Nov Magn 31:3347–3356. https://doi.org/10.1007/s10948-018-4610-2

    Article  Google Scholar 

  25. Wu H, Luo B, Gao C, Wang L, Wang Y, Zhang Q (2019) Synthesis and size control of monodisperse magnesium hydroxide nanoparticles by microemulsion method. J Dispers Sci Technol 1–7. https://doi.org/10.1080/01932691.2019.1594887

  26. Chang C, He Y, Pan C (2020) Aqueous methods for the synthesis of colloidal metal oxide nanoparticles at ambient pressure. In: Colloidal metal oxide nanoparticles. Elsevier, pp 41–66

    Google Scholar 

  27. Lim HR, Jung SJ, Hwang TY, Lee J, Kim KH, Cho H, baek, Choa YH, (2019) Electromagnetic wave absorption properties of Fe/MgO composites synthesized by a simple ultrasonic spray pyrolysis method. Appl Surf Sci 473:1009–1013. https://doi.org/10.1016/j.apsusc.2018.12.222

    Article  Google Scholar 

  28. Chen G, Liu P, Liao Z, Sun F, He Y, Zhong H, Zhang T, Zschech E, Chen M, Wu G, Zhang J, Feng X (2020) Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv Mater 1907399:1–7. https://doi.org/10.1002/adma.201907399

    Article  Google Scholar 

  29. Franzel L, Bertino MF, Huba ZJ, Carpenter EE (2012) Synthesis of magnetic nanoparticles by pulsed laser ablation. Appl Surf Sci 261:332–336. https://doi.org/10.1016/j.apsusc.2012.08.010

    Article  Google Scholar 

  30. De Carvalho JF, De Medeiros SN, Morales MA, Dantas AL, Carriço AS (2013) Synthesis of magnetite nanoparticles by high energy ball milling. Appl Surf Sci 275:84–87. https://doi.org/10.1016/j.apsusc.2013.01.118

    Article  Google Scholar 

  31. Gao X, Xu C, Yin H, Chen P, Wang X, Song Q, Liu J (2020) Synthesis of nano titanium oxide with controlled oxygen content using pulsed discharge in water. Adv Powder Technol 31:986–992. https://doi.org/10.1016/j.apt.2019.12.021

    Article  Google Scholar 

  32. Chokriwa A, Sharma MM, Singh A (2014) Biological synthesis of nanoparticles using bacteria and their applications. Am J Pharmtech Res 4:38–61

    Google Scholar 

  33. Pandey PA, Bell GR, Rourke JP, Sanchez AM, Elkin MD, Hickey BJ, Wilson NR (2011) Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions. Small 7:3202–3210. https://doi.org/10.1002/smll.201101430

    Article  Google Scholar 

  34. Hasanzadeh I, Jafari Eskandari M (2020) Direct growth of multiwall carbon nanotube on metal catalyst by chemical vapor deposition: In situ nucleation. Surf Coatings Technol 381:125109. https://doi.org/10.1016/j.surfcoat.2019.125109

  35. Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, Zeng Y, Li M, Zou G (2007) Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J Magn Magn Mater 309:307–311. https://doi.org/10.1016/j.jmmm.2006.07.037

    Article  Google Scholar 

  36. Kumar A, Yadav N, Bhatt M, Mishra NK, Chaudhary P, Singh R (2015) Sol-gel derived nanomaterials and it’s applications: a review. Res J Chem Sci 5(12):98–105

    Google Scholar 

  37. Kayani ZN, Arshad S, Riaz S, Naseem S (2014) Synthesis of iron oxide nanoparticles by sol-gel technique and their characterization. IEEE Trans Magn 50:1–4. https://doi.org/10.1109/TMAG.2014.2313763

    Article  Google Scholar 

  38. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Lett 2:183–186. https://doi.org/10.1021/nl015681q

    Article  Google Scholar 

  39. Jitianu A, Crisan M, Meghea A, Rau I, Zaharescu M (2002) Influence of the silica based matrix on the formation of iron oxide nanoparticles in the Fe2O3–SiO2 system, obtained by sol–gel method. J Mater Chem 12:1401–1407. https://doi.org/10.1039/b110652j

    Article  Google Scholar 

  40. Dong W, Zhu C (2002) Use of ethylene oxide in the sol–gel synthesis of α-Fe2O3 nanoparticles from Fe(iii) salts. J Mater Chem 12:1676–1683. https://doi.org/10.1039/b200773h

    Article  Google Scholar 

  41. Gu F, Fen Wang S, Feng Song C, Kai Lü M, Xin Qi Y, Jun Zhou G, Xu D, Rong Yuan D (2003) Synthesis and luminescence properties of SnO2 nanoparticles. Chem Phys Lett 372:451–454. https://doi.org/10.1016/S0009-2614(03)00440-8

    Article  Google Scholar 

  42. Zhang J, Gao L (2004) Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. J Solid State Chem 177:1425–1430. https://doi.org/10.1016/j.jssc.2003.11.024

    Article  Google Scholar 

  43. Aziz M, Saber Abbas S, Wan Baharom WR (2013) Size-controlled synthesis of SnO2 nanoparticles by sol-gel method. Mater Lett 91:31–34. https://doi.org/10.1016/j.matlet.2012.09.079

    Article  Google Scholar 

  44. Köse H, Karaal Ş, Aydin AO, Akbulut H (2015) Structural properties of size-controlled SnO2 nanopowders produced by sol–gel method. Mater Sci Semicond Process 38:404–412. https://doi.org/10.1016/j.mssp.2015.03.028

    Article  Google Scholar 

  45. Almamoun O, Ma S (2017) Effect of Mn doping on the structural, morphological and optical properties of SnO2 nanoparticles prepared by Sol-gel method. Mater Lett 199:172–175. https://doi.org/10.1016/j.matlet.2017.04.075

    Article  Google Scholar 

  46. Samoila P, Sacarescu L, Borhan AI, Timpu D, Grigoras M, Lupu N, Zaltariov M, Harabagiu V (2015) Magnetic properties of nanosized Gd doped Ni–Mn–Cr ferrites prepared using the sol–gel autocombustion technique. J Magn Magn Mater 378:92–97. https://doi.org/10.1016/j.jmmm.2014.10.174

    Article  Google Scholar 

  47. Ibrahim I, Ali IO, Salama TM, Bahgat AA, Mohamed MM (2016) Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M = Zn Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: high catalytic performances for nitroarenes reduction. Appl Catal B Environ 181:389–402. https://doi.org/10.1016/j.apcatb.2015.08.005

    Article  Google Scholar 

  48. Bayappagari B, Shaik K, Chakraborty D, Kunapalli CK (2021) Structural, optical and magnetic properties of vacuum annealed Fe, Mn doped NiO nanoparticles. Appl Phys A 127:49. https://doi.org/10.1007/s00339-020-04161-6

    Article  Google Scholar 

  49. Jasrotia R, Puri P, Singh VP, Kumar R (2021) Sol–gel synthesized Mg–Ag–Mn nanoferrites for power applications. J Sol-Gel Sci Technol 97:205–212. https://doi.org/10.1007/s10971-020-05428-3

    Article  Google Scholar 

  50. Peña-Garcia R, Guerra Y, Milani R, Oliveira DM, Rodrigues AR, Padrón-Hernández E (2020) The role of Y on the structural, magnetic and optical properties of Fe-doped ZnO nanoparticles synthesized by sol gel method. J Magn Magn Mater 498:166085. https://doi.org/10.1016/j.jmmm.2019.166085

  51. Zhang G, Qu J, Liu H, Liu R, Wu R (2007) Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res 41:1921–1928. https://doi.org/10.1016/j.watres.2007.02.009

    Article  Google Scholar 

  52. Zhu J, Wei S, Chen X, Karki AB, Rutman D, Young DP, Guo Z (2010) Electrospun polyimide nanocomposite fibers reinforced with core-shell Fe-FeO nanoparticles. J Phys Chem C 114:8844–8850. https://doi.org/10.1021/jp1020033

    Article  Google Scholar 

  53. Rastghalam ZS, Yan C, Shang J, Cheng T (2020) The role of Fe oxyhydroxide coating, illite clay, and peat moss in nanoscale titanium dioxide (nTiO2) retention and transport in geochemically heterogeneous media. Environ Pollut 257:113625. https://doi.org/10.1016/j.envpol.2019.113625

  54. Liang R, Liang Z, Chen F, Xie D, Wu Y, Wang X, Yan G, Wu L (2020) Sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: high performance, recyclable photocatalysts for fuel denitrification. Chin J Catal 41:188–199. https://doi.org/10.1016/S1872-2067(19)63402-9

    Article  Google Scholar 

  55. Tazikeh S, Akbari A, Talebi A, Talebi E (2014) Synthesis and characterization of tin oxide nanoparticles via the Co-precipitation method. Mater Sci Pol 32:98–101. https://doi.org/10.2478/s13536-013-0164-y

    Article  Google Scholar 

  56. Gorer S, Kodes G, Sorek Y, Reisfeld R (1997) Crystal phase transformation in sol-gel films of nanocrystalline CdSe and CdS. Mater Lett 31:209–214. https://doi.org/10.1016/S0167-577X(96)00272-8

    Article  Google Scholar 

  57. Mahdavi M, Bin AM, Haron MJ, Namvar F, Nadi B, Ab Rahman MZ, Amin J (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548. https://doi.org/10.3390/molecules18077533

    Article  Google Scholar 

  58. Paul HL, Antunes APM, Covington AD, Evans P, Phillips PS (2013) Bangladeshi leather industry: an overview of recent sustainable developments. SLTC J 97:25–32. https://doi.org/10.1016/S0011-9164(04)00193-6

    Article  Google Scholar 

  59. Asfaram A, Ghaedi M, Hajati S, Goudarzi A (2015) Ternary dye adsorption onto MnO2 nanoparticle-loaded activated carbon: derivative spectrophotometry and modelling. RSC Adv 5:72300–72320. https://doi.org/10.1039/c5ra10815b

    Article  Google Scholar 

  60. Gupta K, Bhattacharya S, Chattopadhyay D, Mukhopadhyay A, Biswas H, Dutta J, Ray NR, Ghosh UC (2011) Ceria associated manganese oxide nanoparticles: synthesis, characterization and arsenic(V) sorption behavior. Chem Eng J 172:219–229. https://doi.org/10.1016/j.cej.2011.05.092

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the equipment and laboratory supports by the Consultancy Research and Testing Service (CRTS), Environmental Lab of the Department of Civil Engineering, Dhaka University of Engineering & Technology, Gazipur, Gazipur-1700, Bangladesh, Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh, and Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka-1000, Bangladesh.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uddin, M.N., Saha, G.C., Hasanath, M.A., Rahman, M.T., Rashid, M.M. (2022). Development and Characterization of Novel Mn–Fe–Sn Ternary Nanoparticle by Sol–Gel Technique. In: Arthur, S., Saitoh, M., Pal, S.K. (eds) Advances in Civil Engineering. Lecture Notes in Civil Engineering, vol 184. Springer, Singapore. https://doi.org/10.1007/978-981-16-5547-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5547-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5546-3

  • Online ISBN: 978-981-16-5547-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics