Skip to main content

Implantable Direct Current Neural Modulation

  • Reference work entry
  • First Online:
Handbook of Neuroengineering
  • 158 Accesses

Abstract

Neuroprostheses are implants that interface with the central or peripheral nervous system to restore or control neural function. Neuroprostheses are limited to the use of charge balanced alternating current (AC) pulses to avoid toxicity from electrochemical reactions occurring at the metal-tissue interface. The use of direct or long-duration current (DC) to modulate neuronal activity is an alternative methodology that bypasses many of the constraints of traditional neuroprostheses. DC directly modulates extracellular membrane potential, exciting or inhibiting neurons in a graded fashion while maintaining their stochastic firing patterns. DC can also modulate neural sensitivity and synaptic connectivity across broad neural populations. Recently, new innovations in device design have led to a resurgence of interest in the interaction and potential therapeutic application of DC in the central and the peripheral nervous system. In this chapter, implanted DC neural modulation and the feasibility of in vivo DC in neuroprosthetic therapy are reviewed. This chapter provides a brief summary of DC/neural interaction and outlines the implications for neural modulation. It assesses the scope of application for direct current modulation as a form of neuroprosthetic treatment in disease and examines the safety implications of long-duration DC delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF:

Activation function

AP:

Action potential

AC:

Alternating current

CIS:

Continuous interleaved stimulation

CI:

Cochlear implant

CNS:

Central nervous system

CSI:

Spinal cord injury

CV:

Coefficient of variation

EPSP:

Excitatory postsynaptic potential

FEM:

Finite element model

DC:

Direct current

iDC:

ionic Direct current

tDCS:

transcranial Direct current stimulation (or sampling)

IPG:

Implantable pulse generator

ISI:

Inter-spike interval

LIF:

Leaky integrate and fire

ME:

Mirror estimate

OEIP:

Organic electronic ion pump

SDCS:

Safe direct current stimulator

SINE:

Separated interface nerve electrode

References

  1. Piccolino, M.: Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Res. Bull. 46, 381–407 (1998)

    Google Scholar 

  2. Geddes, L.A., Hoff, H.E.: The discovery of bioelectricity and current electricity the Galvani-Volta controversy. IEEE Spectr. 8, 38–46 (1971)

    Google Scholar 

  3. Guleyupoglu, B., Schestatsky, P., Edwards, D., Fregni, F., Bikson, M.: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J. Neurosci. Methods. 219, 297–311 (2013)

    Google Scholar 

  4. Aquilina, O.: A brief history of cardiac pacing. Images Paediatr. Cardiol. 8, 17–81 (2006)

    Google Scholar 

  5. Loeb, G.E.: Neural prosthetics: a review of empirical vs. systems engineering strategies (2018)

    Google Scholar 

  6. Merrill, D.R., Bikson, M., Jefferys, J.G.R.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods. 141, 171–198 (2005)

    Google Scholar 

  7. Ruffini, G., et al.: Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 333–345 (2013)

    Google Scholar 

  8. Bikson, M., et al.: Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 9, 641–661 (2016)

    Google Scholar 

  9. Liebetanz, D., et al.: Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia. 47, 1216–1224 (2006)

    Google Scholar 

  10. Strang, C.E., Ray, M.K., Boggiano, M.M., Amthor, F.R.: Effects of tDCS-like electrical stimulation on retinal ganglion cells. Eye Brain. 10, 65–78 (2018)

    Google Scholar 

  11. Vrabec, T., Bhadra, N., Van Acker, G., Bhadra, N., Kilgore, K.: Continuous direct current nerve block using multi contact high capacitance electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 517–529 (2017)

    Google Scholar 

  12. Yang, F., et al.: Differential expression of voltage-gated sodium channels in afferent neurons renders selective neural block by ionic direct current. Sci. Adv. 4, eaaq1438 (2018)

    Google Scholar 

  13. Bikson, M., et al.: Effect of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J. Physiol. 557, 175–190 (2004)

    Google Scholar 

  14. Goldberg, J.M., Smith, C.E., Fernandez, C.: Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J. Neurophysiol. 51, 1236–1256 (1984)

    Google Scholar 

  15. Rahman, A., et al.: Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J. Physiol. 591, 2563–2578 (2013)

    Google Scholar 

  16. Bikson, M., Rahman, A., Datta, A.: Computational models of transcranial direct current stimulation. Clin. EEG Neurosci. 43, 176–183 (2012)

    Google Scholar 

  17. Smith, C.E., Goldberg, J.M.: Biological cybernetics a stochastic after hyperpolarization model of repetitive activity in vestibular afferents. Biol. Cybern. 54 (1986)

    Google Scholar 

  18. Kwan, A., Forbes, P.A., Mitchell, D.E., Blouin, J.-S., Cullen, K.E.: Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-09738-1

  19. Aplin, F.P., Singh, D., Santina, C.C., Della, Fridman, G.Y.: Combined ionic direct current and pulse frequency modulation improves the dynamic range of vestibular canal stimulation. J. Vestib. Res. 1–8 (2019). https://doi.org/10.3233/ves-190651

  20. Zoski, C.G.: Handbook of electrochemistry (2007). https://doi.org/10.1016/B978-0-444-51958-0.X5000-9

  21. Pour Aryan, N., Kaim, H., Rothermel, A.: Stimulation and recording electrodes for neural prostheses. SpringerBriefs in electrical and computer. Engineering. 78, Springer (2014)

    Google Scholar 

  22. Brummer, S.B., Robblee, L.S., Hambrecht, F.T.: Criteria for selecting electrodes for electrical stimulation: theoretical and practical considerations. Ann. N. Y. Acad. Sci. 405, 159–171 (1983)

    Google Scholar 

  23. Shannon, R.V.: A model of safe levels for electrical stimulation. I.E.E.E. Trans. Biomed. Eng. 39, 424–426 (1992)

    Google Scholar 

  24. McCreery, D.B., Agnew, W.F., Yuen, T.G., Bullara, L.: Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. I.E.E.E. Trans. Biomed. Eng. 37, 996–1001 (1990)

    Google Scholar 

  25. Agnew, W.F., Yuen, T.G., McCreery, D.B., Bullara, L.A.: Histopathologic evaluation of prolonged intracortical electrical stimulation. Exp. Neurol. 92, 162–185 (1986)

    Google Scholar 

  26. Vrabec, T., et al.: Characterization of high capacitance electrodes for the application of direct current electrical nerve block. Med. Biol. Eng. Comput. 54, 191–203 (2016)

    Google Scholar 

  27. Won, S.M., et al.: Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 30 (2018)

    Google Scholar 

  28. Ivanovskaya, A.N., et al.: Electrochemical roughening of thin-film platinum for neural probe arrays and biosensing applications. J. Electrochem. Soc. 165, G3125–G3132 (2018)

    Google Scholar 

  29. Green, R.A., et al.: Laser patterning of platinum electrodes for safe neurostimulation. J. Neural Eng. 11, 056017 (2014)

    Google Scholar 

  30. Chung, T., et al.: Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. J. Neural Eng. 12 (2015)

    Google Scholar 

  31. Desai, S.A.: Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black. Front. Neuroeng. 3, 1–11 (2010)

    Google Scholar 

  32. Boehler, C., Stieglitz, T., Asplund, M.: Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes. Biomaterials. 67, 346–353 (2015)

    Google Scholar 

  33. Boehler, C., Vieira, D.M., Egert, U., Asplund, M.: NanoPt – a nanostructured electrode coating for neural recording and microstimulation. ACS Appl. Mater. Interfaces. 12, 14855–14865 (2020)

    Google Scholar 

  34. Zhou, H.B., et al.: Integration of Au nanorods with flexible thin-film microelectrode arrays for improved neural interfaces. J. Microelectromech. Syst. 18, 88–96 (2009)

    Google Scholar 

  35. Robinson, J.T., et al.: Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012)

    Google Scholar 

  36. Nyberg, T., Inganäs, O., Jerregård, H.: Polymer hydrogel microelectrodes for neural communication. Biomed. Microdevices. 4, 43–52 (2002)

    Google Scholar 

  37. Ferlauto, L., et al.: Development and characterization of PEDOT:PSS/alginate soft microelectrodes for application in neuroprosthetics. Front. Neurosci. 12 (2018)

    Google Scholar 

  38. Shvedova, A., et al.: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Heal. - Part A. (2003). https://doi.org/10.1080/713853956

  39. Gilmour, A.D., Green, R.A., Thomson, C.E.: A low-maintenance, primary cell culture model for the assessment of carbon nanotube toxicity. Toxicol. Environ. Chem. (2013). https://doi.org/10.1080/02772248.2013.844429

  40. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science. 80 (2013). https://doi.org/10.1126/science.1222453

  41. Aregueta-Robles, U.A., Woolley, A.J., Lovell, N.H., Poole-Warren, L.A., Green, R.A.: Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. (2014). https://doi.org/10.3389/fneng.2014.00015

  42. Ackermann, D.M., Bhadra, N., Foldes, E.L., Kilgore, K.L.: Separated interface nerve electrode prevents direct current induced nerve damage. J. Neurosci. Methods. 201, 173–176 (2011)

    Google Scholar 

  43. Fridman, G.Y., Della Santina, C.C.: Safe direct current stimulation to expand capabilities of neural prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 319–328 (2013)

    Google Scholar 

  44. Thakur, R., Nair, A.R., Jin, A., Fridman, G.Y.: Fabrication of a self-curling cuff with a soft, ionically conducting neural interface. in IEEE Engineering in Medicine and Biology Conference (ed. IEEE) (2019)

    Google Scholar 

  45. Aplin, F.P., Singh, D., Santina, C.C., Della, Fridman, G.Y.: Ionic direct current modulation for combined inhibition/excitation of the vestibular system. I.E.E.E. Trans. Biomed. Eng. 66, 775–783 (2019)

    Google Scholar 

  46. Fridman, G.Y., Della Santina, C.C.: Safe direct current stimulator 2: concept and design. Conf. Proc. ... Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2013, 3126–3129 (2013)

    Google Scholar 

  47. Fridman, G.: Safe direct current stimulator design for reduced power consumption and increased reliability. Conf. Proc. ... Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2017, 1082–1085 (2017)

    Google Scholar 

  48. Cheng, C., Thakur, R., Nair, A.R., Sterrett, S., Fridman, G.: Miniature elastomeric valve design for safe direct current stimulator. IEEE Biomed. Circuits Syst. Conf. Healthc. Technol. [proceedings]. IEEE Biomed. Circuits Syst. Conf. 2017, 1–4 (2017)

    Google Scholar 

  49. Cheng, C., Nair, A.R., Thakur, R., Fridman, G.: Normally closed plunger-membrane microvalve self-actuated electrically using a shape memory alloy wire. Microfluid. Nanofluidics. 22, 29 (2018)

    Google Scholar 

  50. Spelman, C., Clopton, J.: Apparatus and method for treating strial hearing loss. (2004)

    Google Scholar 

  51. Arbring Sjöström, T., et al.: A decade of iontronic delivery devices. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201700360

  52. Moulton, S.E., Higgins, M.J., Kapsa, R.M.I., Wallace, G.G.: Organic bionics: a new dimension in neural communications. Adv. Funct. Mater. (2012). https://doi.org/10.1002/adfm.201102232

  53. Simon, D.T., et al.: Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat. Mater. (2009). https://doi.org/10.1038/nmat2494

  54. Isaksson, J., et al.: Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. (2007). https://doi.org/10.1038/nmat1963

  55. Simon, D.T., Larsson, K.C., Berggren, M., Richter-Dahlfors, A.: Precise neurotransmitter-mediated communication with neurons in vitro and in vivo using organic electronics. J. Biomech. Sci. Eng. (2010). https://doi.org/10.1299/jbse.5.208

  56. Simon, D.T., et al.: An organic electronic biomimetic neuron enables auto-regulated neuromodulation. Biosens. Bioelectron. (2015). https://doi.org/10.1016/j.bios.2015.04.058

  57. Larsson, K.C., Kjäll, P., Richter-Dahlfors, A.: Organic bioelectronics for electronic-to-chemical translation in modulation of neuronal signaling and machine-to-brain interfacing. Biochim. Biophys. Acta Gen. Subj. (2013). https://doi.org/10.1016/j.bbagen.2012.11.024

  58. Tarabella, G., et al.: New opportunities for organic electronics and bioelectronics: ions in action. Chem. Sci. (2013). https://doi.org/10.1039/c2sc21740f

  59. Svennersten, K., Larsson, K.C., Berggren, M., Richter-Dahlfors, A.: Organic bioelectronics in nanomedicine. Biochim. Biophys. Acta Gen. Subj. (2011). https://doi.org/10.1016/j.bbagen.2010.10.001

  60. Pethig, R.: Dielectric properties of body tissues. Clin. Phys. Physiol. Meas. (1987). https://doi.org/10.1088/0143-0815/8/4A/002

  61. Geddes, L.A., Baker, L.E.: The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. (1967). https://doi.org/10.1007/BF02474537

  62. Kyle, U.G., et al.: Bioelectrical impedance analysis – part I: review of principles and methods. Clin. Nutr. (2004). https://doi.org/10.1016/j.clnu.2004.06.004

  63. Gudivaka, R., Schoeller, D.A., Kushner, R.F., Bolt, M.J.: Single- and multifrequency models for bioelectrical impedance analysis of body water compartments. J. Appl. Physiol. (1999). https://doi.org/10.1152/jappl.1999.87.3.1087

  64. Wongsarnpigoon, A., Grill, W.M.: Computer-based model of epidural motor cortex stimulation: effects of electrode position and geometry on activation of cortical neurons. Clin. Neurophysiol. 123, 160–172 (2012)

    Google Scholar 

  65. Joucla, S., Glière, A., Yvert, B.: Current approaches to model extracellular electrical neural microstimulation. Front. Comput. Neurosci. 8, 13 (2014)

    Google Scholar 

  66. Grant, P.F., Lowery, M.M.: Effect of dispersive conductivity and permittivity in volume conductor models of deep brain stimulation. I.E.E.E. Trans. Biomed. Eng. 57, 2386–2393 (2010)

    Google Scholar 

  67. Joucla, S., Yvert, B.: Modeling extracellular electrical neural stimulation: from basic understanding to MEA-based applications. J. Physiol. 106, 146–158 (2012)

    Google Scholar 

  68. Plonsey, R., Heppner, D.B.: Considerations of quasi-stationarity in electrophysiological systems. Bull. Math. Biophys. 29, 657–664 (1967)

    Google Scholar 

  69. McNeal, D.R.: Analysis of a model for excitation of myelinated nerve. I.E.E.E. Trans. Biomed. Eng. 23, 329–337 (1976)

    Google Scholar 

  70. Rattay, F.: The basic mechanism for the electrical stimulation of the nervous system. Neuroscience. 89, 335–346 (1999)

    Google Scholar 

  71. Rattay, F.: Analysis of models for external stimulation of axons. I.E.E.E. Trans. Biomed. Eng. BME-33, 974–977 (1986)

    Google Scholar 

  72. Frankenhaueuser, B., Huxley, A.F.: The action potential in the myelinated nerve fiber of Xenopus laevis as computed on the basis of voltage clamp data. J. Physiol. 171, 302–315 (1964)

    Google Scholar 

  73. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  74. Toloza, E.H.S., Negahbani, E., Fröhlich, F.: Ih interacts with somato-dendritic structure to determine frequency response to weak alternating electric field stimulation. J. Neurophysiol. 119, 1029–1036 (2018)

    Google Scholar 

  75. Vacher, H., Mohapatra, D.P., Trimmer, J.S.: Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol. Rev. 88, 1407–1447 (2008)

    Google Scholar 

  76. Eijkelkamp, N., et al.: Neurological perspectives on voltage-gated sodium channels. Brain. 135, 2585–2612 (2012)

    Google Scholar 

  77. McIntyre, C.C., Grill, W.M., Sherman, D.L., Thakor, N.V.: Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J. Neurophysiol. 91, 1457–1469 (2004)

    Google Scholar 

  78. Joucla, S., Yvert, B.: The ‘Mirror’ estimate: an intuitive predictor of membrane polarization during extracellular stimulation. Biophys. J. 96, 3495–3508 (2009)

    Google Scholar 

  79. Rattay, F.: Ways to approximate current-distance relations for electrically stimulated fibers. J. Theor. Biol. 125, 339–349 (1987)

    Google Scholar 

  80. Hopp, F.A., Zuperku, E.J., Coon, R.L., Kampine, J.P.: Effect of anodal blockade of myelinated fibers on vagal C-fiber afferents. Am. J. Phys. 239, R454–R462 (1980)

    Google Scholar 

  81. Mitchell, D., E., Della Santina, C. C. & Cullen, K. E.: Plasticity within excitatory and inhibitory pathways of the vestibulo-spinal circuitry guides changes in motor performance. Sci. Rep. 7, 853 (2017)

    Google Scholar 

  82. Mitchell, D.E., Della Santina, C.C., Cullen, K.E.: Plasticity within non-cerebellar pathways rapidly shapes motor performance in vivo. Nat. Commun. 7, 11238 (2016)

    Google Scholar 

  83. Bhadra, N., Kilgore, K.L.: Direct current electrical conduction block of peripheral nerve. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 313–324 (2004)

    Google Scholar 

  84. Radman, T., Su, Y., An, J.H., Parra, L.C., Bikson, M.: Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J. Neurosci. 27, 3030–3036 (2007)

    Google Scholar 

  85. Shu, Y., Hasenstaub, A., Duque, A., Yu, Y., McCormick, D.A.: Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature. 441, 761–765 (2006)

    Google Scholar 

  86. Chakraborty, D., Truong, D.Q., Bikson, M., Kaphzan, H.: Neuromodulation of axon terminals. Cereb. Cortex. (2018). https://doi.org/10.1093/cercor/bhx158

  87. Jackson, M.P., et al.: Animal models of transcranial direct current stimulation: methods and mechanisms. Clin. Neurophysiol. 127, 3425–3454 (2016)

    Google Scholar 

  88. Bonaiuto, J.J., Bestmann, S.: Understanding the nonlinear physiological and behavioral effects of tDCS through computational neurostimulation. in Progress in Brain Research 222, 75–103 (Elsevier B.V., 2015)

    Google Scholar 

  89. Kabakov, A.Y., Muller, P.A., Pascual-Leone, A., Jensen, F.E., Rotenberg, A.: Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J. Neurophysiol. 107, 1881–1889 (2012)

    Google Scholar 

  90. Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M.F., Nitsche, M.A.: Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 591, 1987–2000 (2013)

    Google Scholar 

  91. Monte-Silva, K., et al.: Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 6, 424–432 (2013)

    Google Scholar 

  92. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Google Scholar 

  93. Wang, X.J.: Probabilistic decision making by slow reverberation in cortical circuits. Neuron. 36, 955–968 (2002)

    Google Scholar 

  94. Hunt, L.T., et al.: Mechanisms underlying cortical activity during value-guided choice. Nat. Neurosci. 15, 470–476 (2012)

    Google Scholar 

  95. Krames, E., Peckham, P.H., Rezai, A.: Neuromodulation: comprehensive Textbook of Principles, Technologies, and Therapies (2018)

    Google Scholar 

  96. Geurts, J.W., Joosten, E.A., van Kleef, M.: Current status and future perspectives of spinal cord stimulation in treatment of chronic pain. Pain. 158, 771–774 (2017)

    Google Scholar 

  97. Gofeld, M.: New horizons in neuromodulation. Curr. Pain Headache Rep. 18, 397 (2014)

    Google Scholar 

  98. Shamji, M.F., De Vos, C., Sharan, A.: The advancing role of neuromodulation for the management of chronic treatment-refractory pain. Neurosurgery. 80, S108–S113 (2017)

    Google Scholar 

  99. Geurts, J.W., et al.: Spinal cord stimulation for complex regional pain syndrome type I: a prospective cohort study with long-term follow-up. Neuromodulation Technol. Neural Interface. 16, 523–529 (2013)

    Google Scholar 

  100. Nnoaham, K.E., Kumbang, J.: Transcutaneous Electrical Nerve Stimulation (TENS) for Chronic Pain. In Cochrane database of systematic reviews, CD003222 (Wiley, 2008). https://doi.org/10.1002/14651858.CD003222.pub2

  101. Ou, P., Fridman, G.: Electronics for a safe direct current stimulator. IEEE Biomed. Circuits Syst. Conf. Healthc. Technol. [proceedings]. IEEE Biomed. Circuits Syst. Conf. 2017 (2017)

    Google Scholar 

  102. Molsberger, A., McCaig, C.D.: Percutaneous direct current stimulation – a new electroceutical solution for severe neurological pain and soft tissue injuries. Med. Devices Evid. Res. 11, 205–214 (2018)

    Google Scholar 

  103. Miles, F.A., Braitman, D.J.: Long-term adaptive changes in primate vestibuloocular reflex. II. Electrophysiological observations on semicircular canal primary afferents. J. Neurophysiol. 43, 1426–1436 (1980)

    Google Scholar 

  104. Sadeghi, S.G., Goldberg, J.M., Minor, L.B., Cullen, K.E.: Efferent-mediated responses in vestibular nerve afferents of the alert macaque. J. Neurophysiol. 101, 988–1001 (2009)

    Google Scholar 

  105. Curthoys, I.S., Halmagyi, G.M.: Vestibular compensation: a review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J. Vestib. Res. 5, 67–107 (1995)

    Google Scholar 

  106. Della Santina, C.C., Migliaccio, A.A., Patel, A.H.: A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-D vestibular sensation. I.E.E.E. Trans. Biomed. Eng. 54, 1016–1030 (2007)

    Google Scholar 

  107. Lewis, R.F.: Vestibular implants studied in animal models: clinical and scientific implications. J. Neurophysiol. 116, 2777–2788 (2016)

    Google Scholar 

  108. Valentin, N.S., Hageman, K.N., Dai, C., Della Santina, C.C., Fridman, G.Y.: Development of a multichannel vestibular prosthesis prototype by modification of a commercially available cochlear implant. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 830–839 (2013)

    Google Scholar 

  109. Hageman, K.N., et al.: A CMOS neural Interface for a multichannel vestibular prosthesis. IEEE Trans. Biomed. Circuits Syst. 10, 269–279 (2016)

    Google Scholar 

  110. Davidovics, N.S., Fridman, G.Y., Chiang, B., Della Santina, C.C.: Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 84–94 (2011)

    Google Scholar 

  111. Davidovics, N.S., Fridman, G.Y., Della Santina, C.C.: Co-modulation of stimulus rate and current from elevated baselines expands head motion encoding range of the vestibular prosthesis. Exp. Brain Res. 218, 389–400 (2012)

    Google Scholar 

  112. Krause, J.S., DeVivo, M.J., Jackson, A.B.: Health status, community integration, and economic risk factors for mortality after spinal cord injury. Arch. Phys. Med. Rehabil. 85, 1764–1773 (2004)

    Google Scholar 

  113. Biering-Sørensen, F., Craggs, M., Kennelly, M., Schick, E., Wyndaele, J.-J.: International lower urinary tract function basic spinal cord injury data set. Spinal Cord. 46, 325–330 (2008)

    Google Scholar 

  114. Stewart, F., et al.: Electrical stimulation with non-implanted electrodes for overactive bladder in adults. Cochrane Database Syst. Rev. 12, CD010098 (2016)

    Google Scholar 

  115. Zhu, D.T., Feng, X.J., Zhou, Y., Wu, J.X.: Therapeutic effects of electrical stimulation on overactive bladder: a meta-analysis. Springerplus. 5, 2032 (2016)

    Google Scholar 

  116. Flamm, J., Kiesswetter, H., Hufschmidt, H.J.: Treatment of the neurogenic bladder with direct current on the spinal cord (Myelotron). Urol. Int. 32, 247–256 (1977)

    Google Scholar 

  117. Radziszewski, K.: Outcomes of electrical stimulation of the neurogenic bladder: results of a two-year follow-up study. NeuroRehabilitation. 32, 867–873 (2013)

    Google Scholar 

  118. Ahmed, Z., Wieraszko, A.: Trans-spinal direct current enhances corticospinal output and stimulation-evoked release of glutamate analog, D-2,3- 3 H-aspartic acid. J. Appl. Physiol. 112, 1576–1592 (2012)

    Google Scholar 

  119. Ahmed, Z.: Electrophysiological characterization of spino-sciatic and cortico-sciatic associative plasticity: modulation by trans-spinal direct current and effects on recovery after spinal cord injury in mice. J. Neurosci. 33, 4935–4946 (2013)

    Google Scholar 

  120. Kerns, J.M., Truong, T.T., Walter, J.S., Khan, T.: Do direct current electric fields enhance micturition in the spinal cat? J. Spinal Cord Med. 19, 225–233 (1996)

    Google Scholar 

  121. Ahmed, Z.: Effects of cathodal trans-spinal direct current stimulation on lower urinary tract function in normal and spinal cord injury mice with overactive bladder. J. Neural Eng. 14, 056002 (2017)

    Google Scholar 

  122. Kuck, A., Stegeman, D.F., van Asseldonk, E.H.F.: Modeling trans-spinal direct current stimulation for the modulation of the lumbar spinal motor pathways. J. Neural Eng. 14, 056014 (2017)

    Google Scholar 

  123. Lian, J., Bikson, M., Sciortino, C., Stacey, W.C., Durand, D.M.: Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J. Physiol. 547, 427–434 (2003)

    Google Scholar 

  124. Stefan, H., Lopes da Silva, F.H.: Epileptic neuronal networks: methods of identification and clinical relevance. Front. Neurol. 4, 8 (2013)

    Google Scholar 

  125. Mina, F., et al.: Model-guided control of hippocampal discharges by local direct current stimulation. Sci. Rep. 7, 1708 (2017)

    Google Scholar 

  126. San-juan, D., et al.: Transcranial direct current stimulation in epilepsy. Brain Stimul. 8, 455–464 (2015)

    Google Scholar 

  127. Møller, A.R.: Tinnitus: presence and future. Prog. Brain Res. 166, 3–16 (2007)

    Google Scholar 

  128. Møller, A.R.: The role of neural plasticity in tinnitus. Prog. Brain Res. 166, 37–544 (2007)

    Google Scholar 

  129. De Ridder, D., et al.: An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci. Biobehav. Rev. 44, 16–32 (2014)

    Google Scholar 

  130. Song, J.-J., Vanneste, S., Van de Heyning, P., De Ridder, D.: Transcranial direct current stimulation in tinnitus patients: a systemic review and meta-analysis. Sci. World J. 2012, 1–7 (2012)

    Google Scholar 

  131. Santos, A.d.H.M., Santos, A.P.S., Santos, H.S., da Silva, A.C.: The use of tDCS as a therapeutic option for tinnitus: a systematic review. Braz. J. Otorhinolaryngol. 84, 653–659 (2018)

    Google Scholar 

  132. Prevoteau, C., Chen, S.Y., Lalwani, A.K.: Music enjoyment with cochlear implantation. Auris Nasus Larynx. 45, 895–902 (2018)

    Google Scholar 

  133. Wilson, B.S., Dorman, M.F.: Cochlear implants: a remarkable past and a brilliant future. Hear. Res. 242, 3–21 (2008)

    Google Scholar 

  134. An, S.K., et al.: Design for a simplified cochlear implant system. I.E.E.E. Trans. Biomed. Eng. 54, 973–982 (2007)

    Google Scholar 

  135. Wilson, B.S., et al.: Better speech recognition with cochlear implants. Nature. 352, 236–238 (1991)

    Google Scholar 

  136. Kiang, N.Y.S., Liberman, M.C., Levine, R.A.: Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds. Ann. Otol. Rhinol. Laryngol. 85, 752–768 (1976)

    Google Scholar 

  137. Liberman, M.C.: Auditory-nerve response from cats raised in a low-noise chamber. J. Acoust. Soc. Am. 63, 442–455 (1978)

    Google Scholar 

  138. Cogan, S.F., Ludwig, K.A., Welle, C.G., Takmakov, P.: Tissue damage thresholds during therapeutic electrical stimulation. J. Neural Eng. 13, 021001 (2016)

    Google Scholar 

  139. Nakauchi, K., et al.: Threshold suprachoroidal–transretinal stimulation current resulting in retinal damage in rabbits. J. Neural Eng. 4, S50–S57 (2007)

    Google Scholar 

  140. Brummer, S.B., Turner, M.J.: Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. I.E.E.E. Trans. Biomed. Eng. BME-24, 59–63 (1977)

    Google Scholar 

  141. Foster, K.R., Schwan, H.P.: Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17, 25–104 (1989)

    Google Scholar 

  142. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269 (1996)

    Google Scholar 

  143. McAdams, E.T., Jossinet, J.: Tissue impedance: a historical overview. Physiol. Meas. 16, A1–A13 (1995)

    Google Scholar 

  144. Hodgkin, A.L., Katz, B.: The effect of temperature on the electrical activity of the giant axon of the squid. J. Physiol. 109, 240–249 (1949)

    Google Scholar 

  145. Wang, H., et al.: Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front. Neurosci. 8, 307 (2014)

    Google Scholar 

  146. Datta, A., Elwassif, M., Bikson, M.: Bio-heat transfer model of transcranial DC stimulation: Comparison of conventional pad versus ring electrode. in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009, pp 670–673 (IEEE, 2009)

    Google Scholar 

  147. Gomez-Tames, J., et al.: Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation. Phys. Med. Biol. 61, 8825–8838 (2016)

    Google Scholar 

  148. Faes, T.J., van der Meij, H.A., de Munck, J.C., Heethaar, R.M. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol. Meas. 20, R1–10 (1999)

    Google Scholar 

  149. Bramlet, R.: Electromanipulation of cells. Clin. Nucl. Med. 23 (1998)

    Google Scholar 

  150. Rubinsky, B.: Irreversible Electroporation. Springer (2010)

    MATH  Google Scholar 

  151. Kim, S.K., Kim, J.H., Kim, K.P., Chung, T.D.: Continuous low-voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges. Anal. Chem. 79, 7761–7766 (2007)

    Google Scholar 

  152. Butterwick, A., Vankov, A., Huie, P., Freyvert, Y., Palanker, D.: Tissue damage by pulsed electrical stimulation. I.E.E.E. Trans. Biomed. Eng. 54, 2261–2267 (2007)

    Google Scholar 

  153. Boinagrov, D., Loudin, J., Palanker, D.: Strength-duration relationship for extracellular neural stimulation: numerical and analytical models. J. Neurophysiol. 104, 2236–2248 (2010)

    Google Scholar 

  154. Abramson, H.A., Moyer, L.S., Gorin, M.H.: Electrophoresis of proteins and the chemistry of cell surfaces. Electrophor. Proteins Chem. Cell Surfaces. (1942)

    Google Scholar 

  155. Jaffe, L.F.: Electrophoresis along cell membranes. Nature. 265, 600–602 (1977)

    Google Scholar 

  156. Rae, C.D., Lee, V.H.-C., Ordidge, R.J., Alonzo, A., Loo, C.: Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics. Int. J. Neuropsychopharmacol. 16, 1695–1706 (2013)

    Google Scholar 

  157. Ballestrasse, C.L., Ruggeri, R.T., Beck, T.R.: Calculations of the pH changes produced in body tissue by a spherical stimulation electrode. Ann. Biomed. Eng. 13, 405–424 (1985)

    Google Scholar 

  158. Huang, C.Q., Carter, P.M., Shepherd, R.K.: Stimulus induced pH changes in cochlear implants: an in vitro and in vivo study. Ann. Biomed. Eng. 29, 791–802 (2001)

    Google Scholar 

  159. Chu, A.P., Morris, K., Greenberg, R.J., Zhou, D.M.: Stimulus induced pH changes in retinal implants. in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol 4, pp 4160–4162 (IEEE, 2004)

    Google Scholar 

  160. Berkelman, T.: 4 Generation of pH gradients. Sep. Sci. Technol. 7, 69–92 (2005)

    Google Scholar 

  161. Macounová, K., Cabrera, C.R., Holl, M.R., Yager, P.: Generation of natural ph gradients in microfluidic channels for use in isoelectric focusing. Ann. Chem. 72(16), 3745–3751 (2000). https://doi.org/10.1021/AC000237D

    Article  Google Scholar 

  162. Hamm, L.L., Nakhoul, N., Hering-Smith, K.S.: Acid-base homeostasis. Clin. J. Am. Soc. Nephrol. 10, 2232–2242 (2015)

    Google Scholar 

  163. Goldman, S.A., Pulsinelli, W.A., Clarke, W.Y., Kraig, R.P., Plum, F.: The effects of extracellular acidosis on neurons and glia in vitro. J. Cereb. Blood Flow Metab. 9, 471–477 (1989)

    Google Scholar 

  164. McCaig, C.D., Rajnicek, A.M., Song, B., Zhao, M.: Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85, 943–978 (2005)

    Google Scholar 

  165. Funk, R.H.W.: Endogenous electric fields as guiding cue for cell migration. Front. Physiol. 6, 143 (2015)

    Google Scholar 

  166. Mccaig, C.D., Rajnicek, A.M.: Electrical fields, nerve growth and nerve regeneration. Exp. Physiol. 76 (1991)

    Google Scholar 

  167. Yao, L., Li, Y.: The role of direct current electric field-guided stem cell migration in neural regeneration. Stem Cell Rev. Rep. 12, 365–375 (2016)

    Google Scholar 

  168. Feng, J.-F., et al.: Electrical guidance of human stem cells in the rat brain. Stem Cell Rep. 9, 177–189 (2017)

    Google Scholar 

  169. Yamashita, M.: Weak electric fields serve as guidance cues that direct retinal ganglion cell axons in vitro. Biochem. Biophys. Rep. 4, 83–88 (2015)

    Google Scholar 

  170. Zhao, H., Steiger, A., Nohner, M., Ye, H.: Specific intensity direct current (DC) electric field improves neural stem cell migration and enhances differentiation towards βIII-tubulin+ neurons. PLoS One. 10, e0129625 (2015)

    Google Scholar 

  171. Fehlings, M.G., Wong, T.H., Tator, C.H., Tymianski, M.: Effect of a direct current field on axons after experimental spinal cord injury. Can. J. Surg. 32, 188–191 (1989)

    Google Scholar 

  172. Groothuis, J., Ramsey, N.F., Ramakers, G.M.J., van der Plasse, G.: Physiological challenges for intracortical electrodes. Brain Stimul. 7, 1–6 (2014)

    Google Scholar 

  173. Szarowski, D.H., et al.: Brain responses to micro-machined silicon devices. Brain Res. 983, 23–35 (2003)

    Google Scholar 

  174. Cicchetti, F., Barker, R.A.: The glial response to intracerebrally delivered therapies for neurodegenerative disorders: is this a critical issue? Front. Pharmacol. 5, 139 (2014)

    Google Scholar 

  175. Hladovec, J.: Experimental arterial thrombosis in rats with continuous registration. Thromb. Diath. Haemorrh. 26, 407–410 (1971)

    Google Scholar 

  176. Lopez-Quintero, S.V., et al.: DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers. J. Neural Eng. 7, 016005 (2010)

    Google Scholar 

  177. Brinton, M., Mandel, Y., Schachar, I., Palanker, D.: Mechanisms of electrical vasoconstriction. J. Neuroeng. Rehabil. 15, 43 (2018)

    Google Scholar 

  178. Bonakdar, M., Graybill, P.M., Davalos, R.V.: A microfluidic model of the blood–brain barrier to study permeabilization by pulsed electric fields. RSC Adv. 7, 42811–42818 (2017)

    Google Scholar 

  179. Cancel, L.M., Arias, K., Bikson, M., Tarbell, J.M.: Direct current stimulation of endothelial monolayers induces a transient and reversible increase in transport due to the electroosmotic effect. Sci. Rep. 8, 9265 (2018)

    Google Scholar 

  180. Singer, A.J., Clark, R.A.F.: Cutaneous wound healing. N. Engl. J. Med. 341, 738–746 (1999)

    Google Scholar 

  181. Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T.: Wound repair and regeneration. Nature. 453, 314–321 (2008)

    Google Scholar 

  182. Jaffe, L.F., Vanable, J.W.: Electric fields and wound healing. Clin. Dermatol. 2, 34–44 (1984)

    Google Scholar 

  183. Zhao, M.: Electrical fields in wound healing—An overriding signal that directs cell migration. Semin. Cell Dev. Biol. 20, 674–682 (2009)

    Google Scholar 

  184. Chiang, M., Robinson, K.R., Vanable, J.W.: Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye. Exp. Eye Res. 54, 999–1003 (1992)

    Google Scholar 

  185. Reid, B., Song, B., McCaig, C.D., Zhao, M.: Wound healing in rat cornea: the role of electric currents. FASEB J. 19, 379–386 (2005)

    Google Scholar 

  186. Zhao, M., et al.: Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature. 442, 457–460 (2006)

    Google Scholar 

  187. Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12, 1158–1162 (1957)

    Google Scholar 

  188. McDonald, F.: Electrical effects at the bone surface. Eur. J. Orthod. 15, 175–183 (1993)

    Google Scholar 

  189. Konikoff, N.J.: Origin of the osseous bioelectric potentials: a review. Ann. Clin. Lab. Sci. 5 (1975)

    Google Scholar 

  190. Leppik, L., et al.: Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci. Rep. 8, 6307 (2018)

    Google Scholar 

  191. Buch, F., Albrektsson, T., Herbst, E.: Direct current influence on bone formation in titanium implants. Biomaterials. 5, 341–346 (1984)

    Google Scholar 

  192. O’connor, B.T., Charlton, H.M., Currey, J.D., Kirby, D.R.S., Woods, C.: Effects of electric current on bone in vivo. Nature. 222, 162–163 (1969)

    Google Scholar 

  193. Griffin, M., Bayat, A.: Electrical stimulation in bone healing: critical analysis by evaluating levels of evidence. Eplasty. 11, e34 (2011)

    Google Scholar 

  194. Kuzyk, P.R., Schemitsch, E.H.: The science of electrical stimulation therapy for fracture healing. Indian J. Orthop. 43, 127 (2009)

    Google Scholar 

  195. Victoria, G., Petrisor, B., Drew, B., Dick, D.: Bone stimulation for fracture healing: what’s all the fuss? Indian J. Orthop. 43, 117 (2009)

    Google Scholar 

  196. Brighton, C.T., Adler, S., Black, J., Itada, N., Friedenberg, Z.B. Cathodic oxygen consumption and electrically induced osteogenesis. Clin. Orthop. Relat. Res. 277–282 (1975)

    Google Scholar 

  197. Aplin, F.P., Fridman, G.Y.: Implantable direct current neural modulation: theory, feasibility, and efficacy. Front. Neurosci. (2019)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the following grant sources: JHU Neurosurgery Pain Research Institute, NIH R01 DC009255, NIH R21 NS081425-01A1, NIH R01 NS092726, MedEl Corporation. Significant material in this chapter was adapted or reproduced with permission from Aplin and Fridman, 2019 [197].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene Y. Fridman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aplin, F.P., Fridman, G.Y. (2023). Implantable Direct Current Neural Modulation. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_14

Download citation

Publish with us

Policies and ethics