Skip to main content

Stemness and Stromal Niche: Targets in Oxidative Stress–Induced Oral Cancer

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Oral cancer is the third most prevalent cancer in the world and the most common among males. Despite improvement in therapeutic strategies, the overall prognosis of oral cancer has remained poor. A subpopulation of cancer cells, known as cancer stem cells (CSCs) and its interaction with tumor microenvironment (TME), drives aggressive behavior of cancer. Excess of pro-oxidant components induces oxidative stress in both cancer cells and TME and plays critical roles in the neoplastic outcomes of the oral cavity. However, CSCs have intrinsic ability to maintain low oxidative stress status and metabolic plasticity which allows it to thrive in high oxidative stress conditions. In this chapter, we have discussed the role of oxidative stress in CSCs and stromal microenvironment of oral cancer and available therapeutic options against it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR (2019) Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol 7:4

    Article  Google Scholar 

  • Ali D, Jönsson-Videsäter K, Deneberg S et al (2011) APR-246 exhibits anti-leukemic activity and synergism with conventional chemotherapeutic drugs in acute myeloid leukemia cells. Eur J Haematol 86:206–215. https://doi.org/10.1111/j.1600-0609.2010.01557.x

    Article  CAS  Google Scholar 

  • Altenhöfer S, Radermacher KA, Kleikers PWM et al (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23:406–427

    Article  Google Scholar 

  • Aral CA, Ölçer SN, Aral K, Kapila Y (2020) Oxidative stress, neutrophil elastase and IGFBP7 levels in patients with oropharyngeal cancer and chronic periodontitis. Oral Dis 26:1393–1401

    Article  Google Scholar 

  • Asano T, Tsutsuda-Asano A, Fukunaga Y (2009) Indomethacin overcomes doxorubicin resistance by decreasing intracellular content of glutathione and its conjugates with decreasing expression of γ-glutamylcysteine synthetase via promoter activity in doxorubicin-resistant leukemia cells. Cancer Chemother Pharmacol 64:715–721

    Article  CAS  Google Scholar 

  • Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25:20. https://doi.org/10.1186/s12929-018-0426-4

    Article  CAS  Google Scholar 

  • Cao H, Banh A, Kwok S et al (2012) Quantitation of human papillomavirus DNA in plasma of oropharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys 82:e351–e358

    Article  CAS  Google Scholar 

  • Cejas P, Casado E, Belda-Iniesta C et al (2004) Implications of oxidative stress and cell membrane lipid peroxidation in human cancer (Spain). Cancer Causes Control 15:707–719

    Article  Google Scholar 

  • Chae YC, Caino MC, Lisanti S et al (2012) Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell 22:331–344

    Article  CAS  Google Scholar 

  • Chae YC, Kim JH (2018) Cancer stem cell metabolism: target for cancer therapy. BMB Rep 51:319

    Article  CAS  Google Scholar 

  • Chandimali N, Jeong DK, Kwon T (2018) Peroxiredoxin II regulates cancer stem cells and stemness-associated properties of cancers. Cancers (Basel) 10:305

    Article  Google Scholar 

  • Chandrupatla SG, Tavares M, Natto ZS (2017) Tobacco use and effects of professional advice on smoking cessation among youth in India. Asian Pacific J cancer Prev APJCP 18:1861

    Google Scholar 

  • Chang C-W, Chen Y-S, Chou S-H et al (2014) Distinct subpopulations of head and neck cancer cells with different levels of intracellular reactive oxygen species exhibit diverse stemness, proliferation, and chemosensitivity. Cancer Res 74:6291–6305

    Article  CAS  Google Scholar 

  • Chen Y, Song Y, Du W et al (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26:1–13

    Article  Google Scholar 

  • Choi Y-J, Gurunathan S, Kim J-H (2018) Graphene oxide–silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): a novel approach for cancer therapy. Int J Mol Sci 19:710

    Article  Google Scholar 

  • Costea DE, Hills A, Osman AH et al (2013) Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma. Cancer Res 73:3888–3901. https://doi.org/10.1158/0008-5472.CAN-12-4150

    Article  CAS  Google Scholar 

  • Dai X, Yan X, Wintergerst KA et al (2020) Nrf2: redox and metabolic regulator of stem cell state and function. Trends Mol Med 26:185–200

    Article  CAS  Google Scholar 

  • Donnenberg VS, Donnenberg AD, Zimmerlin L et al (2010) Localization of CD44 and CD90 positive cells to the invasive front of breast tumors. Cytometry B Clin Cytom 78:287–301. https://doi.org/10.1002/cyto.b.20530

    Article  CAS  Google Scholar 

  • Facompre ND, Harmeyer KM, Sole X et al (2016) JARID1B enables transit between distinct states of the stem-like cell population in oral cancers. Cancer Res 76:5538–5549

    Article  CAS  Google Scholar 

  • Frohwitter G, Zimmermann OL, Kreutzer K et al (2020) Oxidative and nitrosative stress in oral squamous cell carcinoma. Cells Tissues Organs 209:120–127

    Article  CAS  Google Scholar 

  • Ghuwalewala S, Ghatak D, Das P et al (2016) CD44highCD24low molecular signature determines the cancer stem cell and EMT phenotype in oral squamous cell carcinoma. Stem Cell Res 16:405–417

    Article  CAS  Google Scholar 

  • Hassona Y, Cirillo N, Lim KP et al (2013) Progression of genotype-specific oral cancer leads to senescence of cancer-associated fibroblasts and is mediated by oxidative stress and TGF-β. Carcinogenesis 34:1286–1295. https://doi.org/10.1093/carcin/bgt035

    Article  CAS  Google Scholar 

  • Hedley D, Shamas-Din A, Chow S et al (2016) A phase I study of elesclomol sodium in patients with acute myeloid leukemia. Leuk Lymphoma 57:2437–2440

    Article  Google Scholar 

  • Huang Z, Liu Y, Huang Z et al (2016) 1, 25-Dihydroxyvitamin D3 alleviates salivary adenoid cystic carcinoma progression by suppressing GPX1 expression through the NF-κB pathway. Int J Oncol 48:1271–1279

    Article  CAS  Google Scholar 

  • Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P (2019) Metabolism-based therapeutic strategies targeting cancer stem cells. Front Pharmacol 10:203

    Article  CAS  Google Scholar 

  • Kim Y-J, Kim JY, Lee N et al (2017) Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells. Biochem Biophys Res Commun 486:1069–1076

    Article  CAS  Google Scholar 

  • Lee BWL, Ghode P, Ong DST (2019) Redox regulation of cell state and fate. Redox Biol 25:101056

    Article  CAS  Google Scholar 

  • Li F, He B, Ma X et al (2017) Prostaglandin E1 and its analog misoprostol inhibit human CML stem cell self-renewal via EP4 receptor activation and repression of AP-1. Cell Stem Cell 21:359–373

    Article  CAS  Google Scholar 

  • Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    Article  CAS  Google Scholar 

  • Liu J, Wang Z (2015) Increased oxidative stress as a selective anticancer therapy. Oxidative Med Cell Longev:2015

    Google Scholar 

  • Liu Q, Zhang H, Jiang X et al (2017) Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Mol Cancer 16:1–19

    Article  Google Scholar 

  • Liu X, Wang L, Cui W et al (2016) Targeting ALDH1A1 by disulfiram/copper complex inhibits non-small cell lung cancer recurrence driven by ALDH-positive cancer stem cells. Oncotarget 7:58516

    Article  Google Scholar 

  • Lu H, Li X, Lu Y et al (2016) ASCT2 (SLC1A5) is an EGFR-associated protein that can be co-targeted by cetuximab to sensitize cancer cells to ROS-induced apoptosis. Cancer Lett 381:23–30

    Article  CAS  Google Scholar 

  • Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356:156–164

    Article  CAS  Google Scholar 

  • Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  CAS  Google Scholar 

  • Marrache S, Pathak RK, Dhar S (2014) Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc Natl Acad Sci U S A 111:10444–10449. https://doi.org/10.1073/pnas.1405244111

    Article  CAS  Google Scholar 

  • Miyamoto K, Miyamoto T, Kato R et al (2008) FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging. Blood, J Am Soc Hematol 112:4485–4493

    CAS  Google Scholar 

  • Mohell N, Alfredsson J, Fransson Å et al (2015) APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis 6:e1794. https://doi.org/10.1038/cddis.2015.143

    Article  CAS  Google Scholar 

  • Movahed ZG, Rastegari-Pouyani M, Hossein Mohammadi M, Mansouri K (2019) Cancer cells change their glucose metabolism to overcome increased ROS: one step from cancer cell to cancer stem cell? Biomed Pharmacother 112:108690

    Article  Google Scholar 

  • Navarro A, Bández MJ, Gómez C et al (2010) Effects of rotenone and pyridaben on complex I electron transfer and on mitochondrial nitric oxide synthase functional activity. J Bioenerg Biomembr 42:405–412. https://doi.org/10.1007/s10863-010-9309-4

    Article  CAS  Google Scholar 

  • Nejad AE, Najafgholian S, Rostami A et al (2021) The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 21:1–26

    Google Scholar 

  • Pai S, Bamodu OA, Lin Y-K et al (2019) CD47-SIRPα signaling induces epithelial-mesenchymal transition and cancer stemness and links to a poor prognosis in patients with oral squamous cell carcinoma. Cell 8:1658

    Article  CAS  Google Scholar 

  • Park J, Shim J-K, Kang JH et al (2018) Regulation of bioenergetics through dual inhibition of aldehyde dehydrogenase and mitochondrial complex I suppresses glioblastoma tumorspheres. Neuro-Oncology 20:954–965. https://doi.org/10.1093/neuonc/nox243

    Article  CAS  Google Scholar 

  • Patel AK, Vipparthi K, Thatikonda V et al (2018) A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis 7:78. https://doi.org/10.1038/s41389-018-0087-x

    Article  CAS  Google Scholar 

  • Payandeh Z, Tazehkand AP, Barati G et al (2020) Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance. Biochimie 179:32–45

    Article  CAS  Google Scholar 

  • Peitzsch C, Nathansen J, Schniewind SI, Schwarz F, Dubrovska A (2019) Cancer stem cells in head and neck squamous cell carcinoma: identification. Characterization and Clinical Implications Cancers (Basel) 11(5):616

    Article  CAS  Google Scholar 

  • Perkins A, Nelson KJ, Parsonage D et al (2015) Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40:435–445

    Article  CAS  Google Scholar 

  • Phi LTH, Sari IN, Yang Y-G et al (2018) Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018

    Google Scholar 

  • Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15:1243–1253

    Article  CAS  Google Scholar 

  • Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: harms and benefits for human health. Oxidative Med Cell Longev:2017

    Google Scholar 

  • Porporato PE, Filigheddu N, Pedro JMB-S et al (2018) Mitochondrial metabolism and cancer. Cell Res 28:265–280. https://doi.org/10.1038/cr.2017.155

    Article  CAS  Google Scholar 

  • Qu Y, Cong P, Lin C et al (2017) Inhibition of paclitaxel resistance and apoptosis induction by cucurbitacin B in ovarian carcinoma cells. Oncol Lett 14:145–152. https://doi.org/10.3892/ol.2017.6148

    Article  CAS  Google Scholar 

  • Ramkumar K, Samanta S, Kyani A et al (2016) Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor. Nat Commun 7:1–13

    Article  Google Scholar 

  • Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585. https://doi.org/10.1007/s00125-017-4342-z

    Article  CAS  Google Scholar 

  • Renault VM, Rafalski VA, Morgan AA et al (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5:527–539

    Article  CAS  Google Scholar 

  • Rodman SN, Spence JM, Ronnfeldt TJ et al (2016) Enhancement of radiation response in breast cancer stem cells by inhibition of thioredoxin-and glutathione-dependent metabolism. Radiat Res 186:385–395

    Article  CAS  Google Scholar 

  • Ryu I, Ryu MJ, Han J et al (2018) L-Deprenyl exerts cytotoxicity towards acute myeloid leukemia through inhibition of mitochondrial respiration. Oncol Rep 40:3869–3878

    CAS  Google Scholar 

  • Sancho P, Burgos-Ramos E, Tavera A et al (2015) MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab 22:590–605

    Article  CAS  Google Scholar 

  • Schöckel L, Glasauer A, Basit F et al (2015) Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth. Cancer Metab 3:11. https://doi.org/10.1186/s40170-015-0138-0

    Article  Google Scholar 

  • Schulz R, Emmrich T, Lemmerhirt H et al (2012) Identification of a glutathione peroxidase inhibitor that reverses resistance to anticancer drugs in human B-cell lymphoma cell lines. Bioorg Med Chem Lett 22:6712–6715

    Article  CAS  Google Scholar 

  • Shyh-Chang N, Daley GQ, Cantley LC (2013) Stem cell metabolism in tissue development and aging. Development 140:2535–2547

    Article  CAS  Google Scholar 

  • Singam PK, Majumdar S, Uppala D et al (2019) Evaluation of genotoxicity by micronucleus assay in oral leukoplakia and oral squamous cell carcinoma with deleterious habits. J oral Maxillofac Pathol JOMFP 23:300

    Article  Google Scholar 

  • Sun Z, Hu S, Luo Q et al (2013) Overexpression of SENP3 in oral squamous cell carcinoma and its association with differentiation. Oncol Rep 29:1701–1706

    Article  CAS  Google Scholar 

  • Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  Google Scholar 

  • Tang J-Y, Wu K-H, Wang Y-Y et al (2020) Methanol extract of Usnea barbata induces cell killing, apoptosis, and DNA damage against Oral cancer cells through oxidative stress. Antioxidants (Basel, Switzerland) 9. https://doi.org/10.3390/antiox9080694

  • Taniguchi S, Elhance A, Van Duzer A et al (2020) Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science 369. https://doi.org/10.1126/science.aay1813

  • Thomas HE, Zhang Y, Stefely JA et al (2018) Mitochondrial complex I activity is required for maximal autophagy. Cell Rep 24:2404–2417

    Article  CAS  Google Scholar 

  • Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL (2020) Energy metabolism regulates stem cell pluripotency. Front Cell Dev Biol 8:87

    Article  Google Scholar 

  • Utaipan T, Boonyanuphong P, Chuprajob T et al (2020) A trienone analog of curcumin, 1,7-bis(3-hydroxyphenyl)-1,4,6-heptatrien-3-one, possesses ROS- and caspase-mediated apoptosis in human oral squamous cell carcinoma cells in vitro. Appl Biol Chem 63:7. https://doi.org/10.1186/s13765-020-0491-8

    Article  CAS  Google Scholar 

  • Wang F-T, Sun W, Zhang J-T, Fan Y-Z (2019) Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett 17:3055–3065. https://doi.org/10.3892/ol.2019.9973

    Article  CAS  Google Scholar 

  • Wang J, Luo B, Li X et al (2017) Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells. Cell Death Dis 8:e2887. https://doi.org/10.1038/cddis.2017.272

    Article  CAS  Google Scholar 

  • Wang L, Zhang X, Cui G et al (2016) A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II. Oncotarget 7:32054–32064. https://doi.org/10.18632/oncotarget.8410

    Article  Google Scholar 

  • Wilde L, Roche M, Domingo-Vidal M et al (2017) Metabolic coupling and the reverse Warburg effect in cancer: implications for novel biomarker and anticancer agent development. Semin Oncol 44:198–203. https://doi.org/10.1053/j.seminoncol.2017.10.004

    Article  CAS  Google Scholar 

  • Xiao LI, Xu X, Zhang F et al (2017) The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol 11:297–311

    Article  CAS  Google Scholar 

  • Xu B, Wang S, Li R et al (2017) Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κ B and Nrf2. Cell Death Dis 8:e2797–e2797

    Article  CAS  Google Scholar 

  • Xu H, Niu M, Yuan X et al (2020) CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol 9:1–14

    Article  Google Scholar 

  • Yamamoto T, Nakano H, Shiomi K et al (2018) Identification and characterization of a novel NADPH oxidase 1 (Nox1) inhibitor that suppresses proliferation of colon and stomach cancer cells. Biol Pharm Bull 41:419–426

    Article  CAS  Google Scholar 

  • Yang C-Y, Yeh Y-M, Yu H-Y et al (2018) Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front Microbiol 9:862

    Article  Google Scholar 

  • Yang J, Shi X, Yang M et al (2021) Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway. Int J Oral Sci 13:12. https://doi.org/10.1038/s41368-021-00115-7

    Article  CAS  Google Scholar 

  • Yu L, Lu M, Jia D et al (2017) Modeling the genetic regulation of cancer metabolism: interplay between glycolysis and oxidative phosphorylation. Cancer Res 77:1564–1574

    Article  CAS  Google Scholar 

  • Yu T-J, Tang J-Y, Ou-Yang F et al (2020) Low concentration of withaferin a inhibits oxidative stress-mediated migration and invasion in oral cancer cells. Biomol Ther 10:777

    CAS  Google Scholar 

  • Zhang H, Forman HJ (2012) Glutathione synthesis and its role in redox signaling. Semin Cell Dev Biol 23:722–728. https://doi.org/10.1016/j.semcdb.2012.03.017

    Article  CAS  Google Scholar 

  • Zhang X, Fryknäs M, Hernlund E et al (2014) Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat Commun 5:3295. https://doi.org/10.1038/ncomms4295

    Article  CAS  Google Scholar 

  • Zhou D, Shao L, Spitz DR (2014) Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res 122:1–67

    Article  CAS  Google Scholar 

  • Zhu H, Fan J, Zhang S et al (2014) Ratiometric fluorescence imaging of lysosomal Zn 2+ release under oxidative stress in neural stem cells. Biomater Sci 2:89–97

    Article  CAS  Google Scholar 

  • Zou P, Xia Y, Ji J et al (2016) Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer. Cancer Lett 375:114–126. https://doi.org/10.1016/j.canlet.2016.02.058

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the intramural grant from NIBMG. KV acknowledges DST-INSPIRE, SG acknowledges DBT and PM and PP acknowledges CSIR for fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Singh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ghosh, S., Mitra, P., Vipparthi, K., Prasad, P., Singh, S. (2022). Stemness and Stromal Niche: Targets in Oxidative Stress–Induced Oral Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_92

Download citation

Publish with us

Policies and ethics