Skip to main content

Natural Compound-Based Nanoparticles to Target Free Radicals in Cancer

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Cell proliferation and malignant transformation are enabled by genetic and epigenetic changes. During the malignancy process, malignant cells acquire distinguishing characteristics. Cancer cells have acquired the ability to generate more reactive oxygen species (ROS), resulting in high oxidative stress. ROS-mediated signaling is needed for cancer cell physiology, and high levels of ROS cause oxidative stress-induced cytotoxicity in cancer cells. To avoid ROS-mediated cytotoxicity, cancer cells modulate their redox state through various antioxidant mechanisms and keep their ROS levels below the threshold. Cancer treatment that targets oxidative stress is an appealing option. Many natural oxidative stress modulators and bioactive compounds have been used in the treatment of cancer. Conventional uptake of bioactive molecule is associated with lower bioavailability, solubility, unlikely biodistribution, and side effects. Traditional drug uptake is improved by nanoformulation, making it easier to overcome side effects, improve biodistribution, and extend drug duration time. Natural prooxidant-loaded nanoparticles efficiently carry prooxidant to the tumor site and selectively and efficiently induce oxidative stress-mediated cell death in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal BB (2000) Apoptosis and nuclear factor-κB: a tale of association and dissociation. Biochem Pharmacol 60(8):1033–1039

    CAS  Google Scholar 

  • Ahmed S, Kaur G, Sharma P, Singh S, Ikram S (2018) Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. J Appl Biomed 16(3):221–231

    Google Scholar 

  • Alfei S, Marengo B, Zuccari G, Turrini F, Domenicotti C (2020) Dendrimer nanodevices and gallic acid as novel strategies to fight chemoresistance in neuroblastoma cells. Nano 10(6):1243

    CAS  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205–214

    CAS  Google Scholar 

  • Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    CAS  Google Scholar 

  • Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GS, Chandel NS (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177(6):1029–1036

    CAS  Google Scholar 

  • Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128(3):617–630

    CAS  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O 2 sensing. J Biol Chem 275:25130–25138

    CAS  Google Scholar 

  • Chang P-Y, Peng S-F, Lee C-Y, Lu C-C, Tsai S-C, Shieh T-M, Wu T-S, Tu M-G, Chen MY, Yang J-S (2013) Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol 43(4):1141–1150

    CAS  Google Scholar 

  • Chapman E, Zhang D (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34(1):21–43

    Google Scholar 

  • Chatterjee S, Browning EA, Hong N, DeBolt K, Sorokina EM, Liu W, Birnbaum MJ, Fisher AB (2012) Membrane depolarization is the trigger for PI3K/Akt activation and leads to the generation of ROS. Am J Phys Heart Circ Phys 302(1):H105–H114

    CAS  Google Scholar 

  • Choi DG, Venkatesan J, Shim MS (2019) Selective anticancer therapy using pro-oxidant drug-loaded chitosan–fucoidan nanoparticles. Int J Mol Sci 20(13):3220

    CAS  Google Scholar 

  • Collaboration GB o DC (2015) Novel methods for measuring global cancer burden. JAMA Oncol 1(4):505–527

    Google Scholar 

  • Da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1(4):364–369

    Google Scholar 

  • Di Meo SR, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev 2016:1245049

    Google Scholar 

  • Donadelli M, Dando I, Zaniboni T, Costanzo C, Dalla Pozza E, Scupoli M, Scarpa A, Zappavigna S, Marra M, Abbruzzese A (2011) Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis 2(4):e152–e152

    CAS  Google Scholar 

  • Enslen H, Tokumitsu H, Stork P, Davis RJ, Soderling TR (1996) Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proc Natl Acad Sci 93(20):10803–10808

    CAS  Google Scholar 

  • Ferro E, Goitre L, Retta SF, Trabalzini L (2012) The interplay between ROS and Ras GTPases: physiological and pathological implications. J Signal Transduct 2012:365769

    Google Scholar 

  • Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Investig J Tech Meth Pathol 47(5):412–426

    CAS  Google Scholar 

  • García-Fernández LF, Losada A, Alcaide V, Alvarez AM, Cuadrado A, González L, Nakayama K, Nakayama KI, Fernández-Sousa JM, Muñoz A (2002) Aplidin™ induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C δ. Oncogene 21(49):7533–7544

    Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  Google Scholar 

  • Hang W, Yin Z-X, Liu G, Zeng Q, Shen X-F, Sun Q-H, Li D-D, Jian Y-P, Zhang Y-H, Wang Y-S (2018) Piperlongumine and p53-reactivator APR-246 selectively induce cell death in HNSCC by targeting GSTP1. Oncogene 37(25):3384–3398

    CAS  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4):199–218

    CAS  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT, Tew KD (2020) Oxidative stress in cancer. Cancer Cell 38(2):167–197

    CAS  Google Scholar 

  • Hou G-X, Liu P-P, Zhang S, Yang M, Liao J, Yang J, Hu Y, Jiang W-Q, Wen S, Huang P (2018) Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis. Cell Death Dis 9(2):1–15

    Google Scholar 

  • Iqbal J, Abbasi B, Mahmood T, Kanwal S, Ali B, Shah S (2017) Plant-derived anticancer agents: A green anticancer approach. Asian Pac J Trop Biomed 7(12):1129–1150

    Google Scholar 

  • Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275(5306):1649–1652

    CAS  Google Scholar 

  • Kansanen E, Kuosmanen SM, Leinonen H, Levonen A-L (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1(1):45–49

    CAS  Google Scholar 

  • Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS, Bhaskara Rao K (2014) Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One 9(3):e90972

    CAS  Google Scholar 

  • Khan M, Ma T (2017) Is oxidative stress in cancer cells a real therapeutic target. Clin Oncol 2:1221

    Google Scholar 

  • Kim W, Lee S, Seo D, Kim D, Kim K, Kim E, Kang J, Seong KM, Youn H, Youn B (2019a) Cellular stress responses in radiotherapy. Cell 8(9):1105

    CAS  Google Scholar 

  • Kim Y-S, Kim S, Kang HC, Shim MS (2019b) ROS-responsive thioether-based nanocarriers for efficient pro-oxidant cancer therapy. J Ind Eng Chem 75:238–245

    CAS  Google Scholar 

  • Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P (1996) Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 15(19):5314–5325

    CAS  Google Scholar 

  • Koboldt D, Fulton R, McLellan M, Schmidt H, Kalicki-Veizer J, McMichael J, Fulton L, Dooling D, Ding L, Mardis E (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    CAS  Google Scholar 

  • Koundouros N, Poulogiannis G (2018) Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer. Front Oncol 8:160

    Google Scholar 

  • Krumova K, Cosa G (2016) Overview of reactive oxygen species. In: Singlet oxygen: applications in biosciences and nanosciences, vol vol 1. RSC, pp 1–21. https://doi.org/10.1039/9781782622208-00001

    Chapter  Google Scholar 

  • Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA (1997) A molecular redox switch on p21ras: structural basis for the nitric oxide-p21ras interaction. J Biol Chem 272(7):4323–4326

    CAS  Google Scholar 

  • Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu Z-X, Ferrans VJ, Howard BH, Finkel T (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274(12):7936–7940

    CAS  Google Scholar 

  • Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT, Berti A, Pandol SJ, Gukovskaya AS (2007) NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology 133(5):1637–1648

    CAS  Google Scholar 

  • León-González AJ, Auger C, Schini-Kerth VB (2015) Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol 98(3):371–380

    Google Scholar 

  • Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278(10):8516–8525

    CAS  Google Scholar 

  • Li Y, Yang J, Sun X (2021) Reactive oxygen species-based nanomaterials for cancer therapy. Front Chem 9:152

    Google Scholar 

  • Lin C-J, Lee C-C, Shih Y-L, Lin C-H, Wang S-H, Chen T-H, Shih C-M (2012) Inhibition of mitochondria-and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells. PLoS One 7(6):e38706

    CAS  Google Scholar 

  • Lu J, Sharma LK, Bai Y (2009) Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res 19(7):802–815

    CAS  Google Scholar 

  • Maciag A, Sithanandam G, Anderson LM (2004) Mutant K-ras V12 increases COX-2, peroxides and DNA damage in lung cells. Carcinogenesis 25(11):2231–2237

    CAS  Google Scholar 

  • Matsukawa J, Matsuzawa A, Takeda K, Ichijo H (2004) The ASK1-MAP kinase cascades in mammalian stress response. J Biochem 136(3):261–265

    CAS  Google Scholar 

  • McCubrey JA, LaHair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8(9–10):1775–1789

    CAS  Google Scholar 

  • Mirza AZ, Siddiqui FA (2014) Nanomedicine and drug delivery: a mini review. Int Nano Lett 4(1):94

    Google Scholar 

  • Mitsushita J, Lambeth JD, Kamata T (2004) The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res 64(10):3580–3585

    CAS  Google Scholar 

  • Morgan MJ, Liu Z-G (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21(1):103–115

    CAS  Google Scholar 

  • Mukhtar M, Bilal M, Rahdar A, Barani M, Arshad R, Behl T, Brisc C, Banica F, Bungau S (2020) Nanomaterials for diagnosis and treatment of brain cancer: recent updates. Chemosensors 8(4):117

    CAS  Google Scholar 

  • Naqvi S, Panghal A, Flora S (2020) Nanotechnology: a promising approach for delivery of neuroprotective drugs. Front Neurosci 14:494

    Google Scholar 

  • Panieri E, Santoro M (2016) ROS homeostasis and metabolism: a dangerous liaison in cancer cells. Cell Death Dis 7(6):e2253–e2253

    CAS  Google Scholar 

  • Park S-A, Na H-K, Kim E-H, Cha Y-N, Surh Y-J (2009) 4-Hydroxyestradiol induces anchorage-independent growth of human mammary epithelial cells via activation of IκB kinase: potential role of reactive oxygen species. Cancer Res 69(6):2416–2424

    CAS  Google Scholar 

  • Park M, Kim M, Suh Y, Kim R, Kim H, Lim E, Yoo K, Lee G, Kim Y, Hwang S (2014) Novel signaling axis for ROS generation during K-Ras-induced cellular transformation. Cell Death Differ 21(8):1185–1197

    CAS  Google Scholar 

  • Parks DA, Williams TK, Beckman JS (1988) Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am J Physiol Gastrointest Liver Physiol 254(5):G768–G774

    CAS  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):1–33

    Google Scholar 

  • Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278(39):37832–37839

    CAS  Google Scholar 

  • Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52(2):192–203

    CAS  Google Scholar 

  • Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):89

    CAS  Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    CAS  Google Scholar 

  • Prieto-Bermejo R, Romo-González M, Pérez-Fernández A, Ijurko C, Hernández-Hernández Á (2018) Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. J Exp Clin Cancer Res 37(1):1–18

    Google Scholar 

  • Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangerous liaison. Br J Cancer 122(2):168–181

    Google Scholar 

  • Salehi B, Azzini E, Zucca P, Maria Varoni E, Anil Kumar NV, Dini L, Panzarini E, Rajkovic J, Valere Tsouh Fokou P, Peluso I (2020) Plant-derived bioactives and oxidative stress-related disorders: a key trend towards healthy aging and longevity promotion. Appl Sci 10(3):947

    CAS  Google Scholar 

  • Sarkar FH, Li Y (2007) NF-κB is a key regulator for oxidative stress, cancer and beyond. Oxford Biomedical Research, Oxford

    Google Scholar 

  • Schmitt JM, Wayman GA, Nozaki N, Soderling TR (2004) Calcium activation of ERK mediated by calmodulin kinase I. J Biol Chem 279(23):24064–24072

    CAS  Google Scholar 

  • Shan F, Shao Z, Jiang S, Cheng Z (2016) Erlotinib induces the human non-small-cell lung cancer cells apoptosis via activating ROS-dependent JNK pathways. Cancer Med 5(11):3166–3175

    CAS  Google Scholar 

  • Stehbens WE (2004) Oxidative stress in viral hepatitis and AIDS. Exp Mol Pathol 77(2):121–132

    CAS  Google Scholar 

  • Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10(1–3):1881–1896

    CAS  Google Scholar 

  • Sundaresan M, Yu Z-X, Ferrans VJ, Sulciner DJ, Gutkind S, Irani KJ, Goldschmidt-Clermont PJ, Finkel T (1996) Regulation of reactive-oxygen-species generation in fibroblasts by Rac 1. Biochem J 318(2):379–382

    CAS  Google Scholar 

  • Taguchi K, Yamamoto M (2017) The KEAP1–NRF2 system in cancer. Front Oncol 7:85

    Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Phys Lung Cell Mol Phys 279(6):L1005–L1028

    CAS  Google Scholar 

  • Thilakarathna SH, Rupasinghe HP (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5(9):3367–3387

    Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    CAS  Google Scholar 

  • Watkins R, Wu L, Zhang C, Davis RM, Xu B (2015) Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 10:6055–6074

    Google Scholar 

  • Whisler RL, Goyette MA, Grants IS, Newhouse YG (1995) Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in Jurkat T cells. Arch Biochem Biophys 319(1):23–35

    CAS  Google Scholar 

  • Wohlfart S, Khalansky AS, Gelperina S, Begley D, Kreuter J (2011) Kinetics of transport of doxorubicin bound to nanoparticles across the blood–brain barrier. J Control Release 154(1):103–107

    CAS  Google Scholar 

  • Xiao GG, Wang M, Li N, Loo JA, Nel AE (2003) Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem 278(50):50781–50790

    CAS  Google Scholar 

  • Xu WT, Shen GN, Li TZ, Zhang Y, Zhang T, Xue H, Zuo WB, Li YN, Zhang DJ, Jin CH (2020) Isoorientin induces the apoptosis and cell cycle arrest of A549 human lung cancer cells via the ROS-regulated MAPK, STAT3 and NF-κB signaling pathways. Int J Oncol 57(2):550–561

    CAS  Google Scholar 

  • Yadav UP, Singh T, Kumar P, Sharma P, Kaur H, Sharma S, Singh S, Kumar S, Mehta K (2020) Metabolic adaptations in cancer stem cells. Front Oncol 10:1010

    Google Scholar 

  • Yin W, Li J, Ke W, Zha Z, Ge Z (2017) Integrated nanoparticles to synergistically elevate tumor oxidative stress and suppress antioxidative capability for amplified oxidation therapy. ACS Appl Mater Interfaces 9(35):29538–29546

    CAS  Google Scholar 

  • Zamboni W (2007) Carrier-mediated and artificial-cell targeted cancer drug delivery. In: Artificial cells, cell engineering and therapy. Elsevier, pp 469–501

    Google Scholar 

  • Zhang Q, Ma Y, Cheng Y-F, Li W-J, Zhang Z, Chen S-Y (2011) Involvement of reactive oxygen species in 2-methoxyestradiol-induced apoptosis in human neuroblastoma cells. Cancer Lett 313(2):201–210

    CAS  Google Scholar 

  • Zhu W, Wu S, Hannun YA (2017) Contributions of the intrinsic mutation process to cancer mutation and risk burdens. EBioMedicine 24:5–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Singh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yadav, U.P. et al. (2022). Natural Compound-Based Nanoparticles to Target Free Radicals in Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_276

Download citation

Publish with us

Policies and ethics