Skip to main content

Oxidative Stress Associated Non-coding RNAs in Pathogenesis of Urologic Cancers: Prognostic and Therapeutic Importance

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

In understanding the role of non-coding RNA in the pathogenesis of oxidative stress-induced urologic cancer, the present study focused on available data of miR-21, an oncogenic miRNA from published literature, in the malignancy of human prostate. miR-21 is over-expressed under oxidative stress, and it serves as a mediator to upregulate ROS (reactive oxygen species) induced signaling pathways including AR (androgen receptor), PI3K/Akt, RTK/ERK, and so on during carcinogenesis of prostate. In prostate cancer, association of miR-21 with aggressive tumor phenotypes, poor patient survival, and differential response of patients to conventional treatment measures indicated its (miR-21) potency to predict disease outcome as a prognostic biomarker. In the body fluid of patients, availability of miR-21 and its prognostic value may be explored to evaluate disease outcomes in non-invasive methods. miR-21 has been targeted therapeutically by synthetic and naturally occurring substances with significant suppression of tumorigenicity of cancer cells. However extensive in vivo research is warranted with therapeutic measures to determine the effective dose and to develop suitable delivery system for initiating their bedside implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bao B, Ahmad A, Kong D, Ali S, Azmi AS, Li Y, Banerjee S, Padhye S, Sarkar FH (2012) Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF. PLoS One 7(8):e43726

    CAS  Google Scholar 

  • Bickeböller M, Tagscherer KE, Kloor M, Jansen L, Chang-Claude J, Brenner H, Hoffmeister M, Toth C, Schirmacher P, Roth W, Bläker H (2015) Functional characterization of the tumor-suppressor MARCKS in colorectal cancer and its association with survival. Oncogene 34(9):1150–1159

    Google Scholar 

  • Bonci D, Coppola V, Patrizii M, Addario A, Cannistraci A, Francescangeli F, Pecci R, Muto G, Collura D, Bedini R, Zeuner A, Valtieri M, Sentinelli S, Benassi MS, Gallucci M, Carlini P, Piccolo S, De Maria R (2016) A microRNA code for prostate cancer metastasis. Oncogene 35(9):1180–1192

    CAS  Google Scholar 

  • Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22(53):8608–8618

    CAS  Google Scholar 

  • Chang SN, Dey DK, Oh ST, Kong WH, Cho KH, Al-Olayan EM, Hwang BS, Kang SC, Park JG (2020) Phorbol 12-Myristate 13-Acetate induced toxicity study and the role of tangeretin in abrogating HIF-1α-NF-κB crosstalk in vitro and in vivo. Int J Mol Sci 21(23):9261

    CAS  Google Scholar 

  • Chen C, Huang X, Wang Y, Lin L, Liu L, Li G, Wu S, Xu C, Zhou J, Shuai X (2017) Polymeric vector-mediated delivery of an miR-21 inhibitor for prostate cancer treatment. RSC Adv 7:11057–11066

    CAS  Google Scholar 

  • Chen X, Duan N, Zhang C, Zhang W (2016) Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies. J Cancer 7(3):314–323

    CAS  Google Scholar 

  • Coppola V, Musumeci M, Patrizii M, Cannistraci A, Addario A, Maugeri-Saccà M, Biffoni M, Francescangeli F, Cordenonsi M, Piccolo S, Memeo L, Pagliuca A, Muto G, Zeuner A, De Maria R, Bonci D (2013) BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene 32(14):1843–1853

    CAS  Google Scholar 

  • Darimipourain M, Wang S, Ittmann M, Kwabi-Addo B (2011) Transcriptional and post-transcriptional regulation of Sprouty1, a receptor tyrosine kinase inhibitor in prostate cancer. Prostate Cancer Prostatic Dis 14(4):279–285

    CAS  Google Scholar 

  • Dong B, Shi Z, Wang J, Wu J, Yang Z, Fang K (2015) IL-6 inhibits the targeted modulation of PDCD4 by miR-21 in prostate cancer. PLoS One 10(8):e0134366

    Google Scholar 

  • Dy GW, Gore JL, Forouzanfar MH, Naghavi M, Fitzmaurice C (2017) Global burden of urologic cancers, 1990-2013. Eur Urol 71(3):437–446

    Google Scholar 

  • Ebrahimi SO, Reiisi S, Shareef S (2020) miRNAs, oxidative stress, and cancer: a comprehensive and updated review. J Cell Physiol 235(11):8812–8825

    CAS  Google Scholar 

  • Erson AE, Yakicier MC, Selcuklu SD (2007) MIRN21 (microRNA 21). Atlas Genet Cytogenet Oncol Haematol 11(3):232–236

    Google Scholar 

  • Frohlich DA, McCabe MT, Arnold RS, Day ML (2008) The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 27(31):4353–4362

    CAS  Google Scholar 

  • Geng Z, Fan WY, Zhou B, Ye C, Tong Y, Zhou YB, Xiong XQ (2019) FNDC5 attenuates obesity-induced cardiac hypertrophy by inactivating JAK2/STAT3-associated inflammation and oxidative stress. J Transl Med 17(1):107

    Google Scholar 

  • Ghosh S, Basu M, Banerjee K, Chaudhury SP, Paul T, Bera DK, Pal DK, Sk UH, Panda CK, Ghosh A (2021) Arsenic level in bladder tumor of patients from an exposed population: association with progression and prognosis. Future Oncol 17(11):1311–1323

    CAS  Google Scholar 

  • Guan C, Zhang L, Wang S, Long L, Zhou H, Qian S, Ma M, Bai F, Meng QH, Lyu J (2019) Upregulation of microRNA-21 promotes tumorigenesis of prostate cancer cells by targeting KLF5. Cancer Biol Ther 20(8):1149–1161

    CAS  Google Scholar 

  • Guan Y, Wu Y, Liu Y, Ni J, Nong S (2016) Association of microRNA-21 expression with clinicopathological characteristics and the risk of progression in advanced prostate cancer patients receiving androgen deprivation therapy. Prostate 76(11):986–993

    CAS  Google Scholar 

  • Han C, Wang Z, Xu Y, Chen S, Han Y, Li L, Wang M, Jin X (2020) Roles of reactive oxygen species in biological behaviors of prostate cancer. Biomed Res Int 2020:1269624

    Google Scholar 

  • Hu X, Fan J, Duan B, Zhang H, He Y, Duan P, Li X (2018) Single-molecule catalytic hairpin assembly for rapid and direct quantification of circulating miRNA biomarkers. Anal Chim Acta 1042:109–115

    CAS  Google Scholar 

  • Jung KA, Kwak MK (2010) The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 15(10):7266–7291

    CAS  Google Scholar 

  • Kim K, Kim HH, Lee CH, Kim S, Cheon GJ, Kang KW, Chung JK, Youn H (2020) Therapeutic efficacy of modified anti-miR21 in metastatic prostate cancer. Biochem Biophys Res Commun 529(3):707–713

    CAS  Google Scholar 

  • Krstić J, Trivanović D, Mojsilović S, Santibanez JF (2015) Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression. Oxidative Med Cell Longev 2015:654594

    Google Scholar 

  • Kumar B, Rosenberg AZ, Choi SM, Fox-Talbot K, De Marzo AM, Nonn L, Brennen WN, Marchionni L, Halushka MK, Lupold SE (2018) Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. Sci Rep 8(1):7189

    Google Scholar 

  • Lee HC, Ou CH, Huang YC, Hou PC, Creighton CJ, Lin YS, Hu CY, Lin SC (2021) YAP1 overexpression contributes to the development of enzalutamide resistance by induction of cancer stemness and lipid metabolism in prostate cancer. Oncogene 40(13):2407–2421

    CAS  Google Scholar 

  • Leung JK, Sadar MD (2017) Non-genomic actions of the androgen receptor in prostate cancer. Front Endocrinol (Lausanne) 8:2

    Google Scholar 

  • Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383(3):280–285

    CAS  Google Scholar 

  • Li T, Li RS, Li YH, Zhong S, Chen YY, Zhang CM, Hu MM, Shen ZJ (2012) miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J Urol 187(4):1466–1472

    CAS  Google Scholar 

  • Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772

    CAS  Google Scholar 

  • Lin HK, Hu YC, Lee DK, Chang C (2004) Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol Endocrinol 18(10):2409–2423

    CAS  Google Scholar 

  • Lin X, Kapoor A, Gu Y, Chow MJ, Xu H, Major P, Tang D (2019) Assessment of biochemical recurrence of prostate cancer (review). Int J Oncol 55(6):1194–1212

    CAS  Google Scholar 

  • Lu C, Zhou D, Wang Q, Liu W, Yu F, Wu F, Chen C (2020) Crosstalk of micrornas and oxidative stress in the pathogenesis of cancer. Oxidative Med Cell Longev 2020:2415324

    Google Scholar 

  • Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11(7):537–561

    CAS  Google Scholar 

  • Mao B, Zhang Z, Wang G (2015) BTG2: a rising star of tumor suppressors (review). Int J Oncol 46(2):459–464

    CAS  Google Scholar 

  • Minciullo PL, Inferrera A, Navarra M, Calapai G, Magno C, Gangemi S (2015) Oxidative stress in benign prostatic hyperplasia: a systematic review. Urol Int 94(3):249–254

    CAS  Google Scholar 

  • Mishra S, Deng JJ, Gowda PS, Rao MK, Lin CL, Chen CL, Huang T, Sun LZ (2014) Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene 33(31):4097–4106

    CAS  Google Scholar 

  • Miyata Y, Matsuo T, Sagara Y, Ohba K, Ohyama K, Sakai H (2017) A mini-review of reactive oxygen species in urological cancer: correlation with NADPH oxidases, angiogenesis, and apoptosis. Int J Mol Sci 18(10):2214

    Google Scholar 

  • Mollasalehi H, Hamidi A (2021) Early-phase nano-genosensing of cell-free nucleobiomarkers in the plasma of cancerous patients. Nanomedicine 32:102344

    CAS  Google Scholar 

  • Paschos A, Pandya R, Duivenvoorden WC, Pinthus JH (2013) Oxidative stress in prostate cancer: changing research concepts towards a novel paradigm for prevention and therapeutics. Prostate Cancer Prostatic Dis 16(3):217–225

    CAS  Google Scholar 

  • Reis ST, Pontes-Junior J, Antunes AA, Dall’Oglio MF, Dip N, Passerotti CC, Rossini GA, Morais DR, Nesrallah AJ, Piantino C, Srougi M, Leite KR (2012) miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol 12:14

    CAS  Google Scholar 

  • Ribas J, Lupold SE (2010) The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell Cycle 9(5):923–929

    CAS  Google Scholar 

  • Rodríguez-Berriguete G, Fraile B, Martínez-Onsurbe P, Olmedilla G, Paniagua R, Royuela M (2012) MAP kinases and prostate cancer. J Signal Transduct 2012:169170

    Google Scholar 

  • Sabahi A, Salahandish R, Ghaffarinejad A, Omidinia E (2020) Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic au nanostructure for early detection of prostate cancer. Talanta 209:120595

    CAS  Google Scholar 

  • Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM (2018) The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 15(1):11–24

    Google Scholar 

  • Shen KH, Liao AC, Hung JH, Lee WJ, Hu KC, Lin PT, Liao RF, Chen PS (2014) α-Solanine inhibits invasion of human prostate cancer cell by suppressing epithelial-mesenchymal transition and MMPs expression. Molecules 19(8):11896–11914

    Google Scholar 

  • Sheth S, Jajoo S, Kaur T, Mukherjea D, Sheehan K, Rybak LP, Ramkumar V (2012) Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One 7(12):e51655

    CAS  Google Scholar 

  • Shin S, Park YH, Jung SH, Jang SH, Kim MY, Lee JY, Chung YJ (2021) Urinary exosome microRNA signatures as a noninvasive prognostic biomarker for prostate cancer. NPJ Genom Med 6(1):45

    CAS  Google Scholar 

  • Shiota M, Yokomizo A, Naito S (2012) Pro-survival and anti-apoptotic properties of androgen receptor signaling by oxidative stress promote treatment resistance in prostate cancer. Endocr Relat Cancer 19(6):R243–R253

    CAS  Google Scholar 

  • Shukla S, Srivastava JK, Shankar E, Kanwal R, Nawab A, Sharma H, Bhaskaran N, Ponsky LE, Fu P, MacLennan GT, Gupta S (2020) Oxidative stress and antioxidant status in high-risk prostate cancer subjects. Diagnostics (Basel) 10(3):126

    CAS  Google Scholar 

  • Toren P, Zoubeidi A (2014) Targeting the PI3K/Akt pathway in prostate cancer: challenges and opportunities (review). Int J Oncol 45(5):1793–1801

    CAS  Google Scholar 

  • Wang P, Phan T, Gordon D, Chung S, Henning SM, Vadgama JV (2015) Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells. Mol Nutr Food Res 59(2):250–261

    CAS  Google Scholar 

  • Wang Q, Yang HS (2018) The role of Pdcd4 in tumour suppression and protein translation. Biol Cell. https://doi.org/10.1111/boc.201800014

  • Warraich UE, Hussain F, Kayani HUR (2020) Aging - oxidative stress, antioxidants and computational modeling. Heliyon 6(5):e04107

    Google Scholar 

  • Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Böhm M, Nickenig G (2004) Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res 94(4):534–541

    CAS  Google Scholar 

  • Weng MS, Chang JH, Hung WY, Yang YC, Chien MH (2018) The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J Exp Clin Cancer Res 37(1):61

    Google Scholar 

  • Yang B, Liu Z, Ning H, Zhang K, Pan D, Ding K, Huang W, Kang XL, Wang Y, Chen X (2016) MicroRNA-21 in peripheral blood mononuclear cells as a novel biomarker in the diagnosis and prognosis of prostate cancer. Cancer Biomark 17(2):223–230

    CAS  Google Scholar 

  • Yang CH, Yue J, Sims M, Pfeffer LM (2013) The curcumin analog EF24 targets NF-κB and miRNA-21, and has potent anticancer activity in vitro and in vivo. PLoS One 8(8):e71130

    CAS  Google Scholar 

  • Yang FQ, Liu M, Li W, Che JP, Wang GC, Zheng JH (2015) Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA-21. Mol Med Rep 11(2):1085–1092

    CAS  Google Scholar 

  • Yang Y, Guo JX, Shao ZQ (2017) miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Med 10(1):87–91

    CAS  Google Scholar 

  • Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176

    Google Scholar 

  • Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, Zhu YP, Shen YJ, Shi GH, Ye DW (2011) Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 71(3):326–331

    CAS  Google Scholar 

  • Zhang P, Wu W, Chen Q, Chen M (2019) Non-coding RNAs and their integrated networks. J Integr Bioinform 16(3):20190027

    Google Scholar 

  • Zhao W, Ning L, Wang L, Ouyang T, Qi L, Yang R, Wu Y (2021) miR-21 inhibition reverses doxorubicin-resistance and inhibits PC3 human prostate cancer cells proliferation. Andrologia 53(5):e14016

    CAS  Google Scholar 

  • Zhou B, Wang J, Zheng G, Qiu Z (2016) Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21. Food Chem Toxicol 97:375–384

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Hon’ble Vice Chancellor, Presidency University Kolkata, India. Financial support for this work was provided by the West Bengal State Govt. sponsored Presidency University FRPDF funds to Dr. Amlan Ghosh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan Ghosh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bardhan, A., Ghosh, A. (2022). Oxidative Stress Associated Non-coding RNAs in Pathogenesis of Urologic Cancers: Prognostic and Therapeutic Importance. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_236

Download citation

Publish with us

Policies and ethics