Skip to main content

Oxidative Stress-Related Mechanisms That Mediate Chemoresistance in Cancer Stem Cells

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Cancer stem cells (CSCs) or tumor-initiating cells (TICs) are cellular progenitors involved in tumor progression, as well as in high therapeutic resistance and disease recurrence. Chemotherapy and ionizing radiation are ROS-inducible DNA damage, with focus on cellular increased proliferation cells. Reactive oxygen species (ROS) are chemical species related to several metabolic pathways, playing a double-edged sword, usually kept in balance through a range of exogenous and endogenous antioxidant systems, representing the so-called redox axis. However, when this axis is unbalanced, the increased levels of ROS can damage cellular structures and lead to DNA damage and cell death. Hereby, we describe the redox mechanisms involved in CSCs as a determinant for poor therapeutic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Artero-Castro A, Perez-Alea M, Feliciano A et al (2015) Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy 11:1499–1519

    Article  CAS  Google Scholar 

  • Bi J, Chowdhry S, Wu S, Zhang W, Masui K, Mischel PS (2020) Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nat Rev Cancer 20:57–70

    Article  CAS  Google Scholar 

  • Bodet L, Menoret E, Descamps G et al (2010) BH3-only protein Bik is involved in both apoptosis induction and sensitivity to oxidative stress in multiple myeloma. Br J Cancer 103:1808–1814

    Article  CAS  Google Scholar 

  • Briehl MM, Tome ME, Wilkinson ST, Jaramillo MC, Lee K (2014) Mitochondria and redox homoeostasis as chemotherapeutic targets. Biochem Soc Trans 42:939–944

    Article  CAS  Google Scholar 

  • Brown CO, Salem K, Wagner BA et al (2012) Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase. Biochem J 444:515–527

    Article  CAS  Google Scholar 

  • Cai J, Wang J, Huang Y et al (2016) ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells. Cell Death Dis 7:e2459

    Article  CAS  Google Scholar 

  • Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT, LLeonart ME (2016) The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev 49:25–36

    Article  CAS  Google Scholar 

  • Chang CW, Chen YS, Chou SH et al (2014) Distinct subpopulations of head and neck cancer cells with different levels of intracellular reactive oxygen species exhibit diverse stemness, proliferation, and chemosensitivity. Cancer Res 74:6291–6305

    Article  CAS  Google Scholar 

  • Cheng EH, Wei MC, Weiler S et al (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711

    Article  CAS  Google Scholar 

  • Cojoc M, Peitzsch C, Kurth I et al (2015) Aldehyde dehydrogenase is regulated by beta-Catenin/TCF and promotes radioresistance in prostate cancer progenitor cells. Cancer Res 75:1482–1494

    Article  CAS  Google Scholar 

  • Corrado P, Mancini M, Brusa G et al (2009) Acetylation of FOXO3a transcription factor in response to imatinib of chronic myeloid leukemia. Leukemia 23:405–406

    Article  CAS  Google Scholar 

  • Cox AG, Hampton MB (2007) Bcl-2 over-expression promotes genomic instability by inhibiting apoptosis of cells exposed to hydrogen peroxide. Carcinogenesis 28:2166–2171

    Article  CAS  Google Scholar 

  • Cruz RD, Tricot G, Zangari M, Zhan F (2011) Progress in myeloma stem cells. Am J Blood Res 1:135–145

    Google Scholar 

  • Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    Article  CAS  Google Scholar 

  • Da Ros M, De Gregorio V, Iorio AL et al (2018) Glioblastoma chemoresistance: the double play by microenvironment and blood-brain barrier. Int J Mol Sci 19

    Google Scholar 

  • D'Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  Google Scholar 

  • Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194:1861–1874

    Article  CAS  Google Scholar 

  • De Beça FF, Caetano P, Gerhard R et al (2013) Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol 66:187–191

    Article  Google Scholar 

  • Del Poeta G, Venditti A, Del Principe MI et al (2003) Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML). Blood 101:2125–2131

    Article  Google Scholar 

  • Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  CAS  Google Scholar 

  • Ding S, Li C, Cheng N, Cui X, Xu X, Zhou G (2015) Redox Regulation in Cancer Stem Cells. Oxidative Med Cell Longev 2015:750798

    Article  Google Scholar 

  • Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181

    Article  CAS  Google Scholar 

  • Farge T, Saland E, de Toni F et al (2017) Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov 7:716–735

    Article  CAS  Google Scholar 

  • Gartenhaus RB, Prachand SN, Paniaqua M, Li Y, Gordon LI (2002) Arsenic trioxide cytotoxicity in steroid and chemotherapy-resistant myeloma cell lines: enhancement of apoptosis by manipulation of cellular redox state. Clin Cancer Res 8:566–572

    CAS  Google Scholar 

  • Global Health Observatory (2018) Global Health Estimates 2016: disease burden by cause, age, sex, by country and by region, 2000–2016. World Health Organization. https://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html. Accessed 3 Oct 2020

  • Gourzones C, Bellanger C, Lamure S et al (2019) Antioxidant defenses confer resistance to high dose melphalan in multiple myeloma cells. Cancer:11

    Google Scholar 

  • Heckman CA, Mehew JW, Boxer LM (2002) NF-kappaB activates Bcl-2 expression in t(14;18) lymphoma cells. Oncogene 21:3898–3908

    Article  CAS  Google Scholar 

  • Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7:585–598

    Article  CAS  Google Scholar 

  • Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    Article  CAS  Google Scholar 

  • Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 117:1049–1057

    Article  CAS  Google Scholar 

  • Jang JE, Eom JI, Jeung HK et al (2020) PERK/NRF2 and autophagy form a resistance mechanism against G9a inhibition in leukemia stem cells. J Exp Clin Cancer Res 39:66

    Article  CAS  Google Scholar 

  • Januchowski R, Wojtowicz K, Zabel M (2013) The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed Pharmacother 67:669–680

    Article  CAS  Google Scholar 

  • Kahroba H, Shirmohamadi M, Hejazi MS, Samadi N (2019) The Role of Nrf2 signaling in cancer stem cells: From stemness and self-renewal to tumorigenesis and chemoresistance. Life Sci 239:116986

    Article  CAS  Google Scholar 

  • Kakolyris S, Giatromanolaki A, Koukourakis M et al (2001) Thioredoxin expression is associated with lymph node status and prognosis in early operable non-small cell lung cancer. Clin Cancer Res 7:3087–3091

    CAS  Google Scholar 

  • Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57:545–553

    Article  CAS  Google Scholar 

  • Kim HM, Haraguchi N, Ishii H et al (2012) Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial-mesenchymal transition-like phenomenon. Ann Surg Oncol 19(Suppl 3):S539–S548

    Article  Google Scholar 

  • Kondoh H, Lleonart ME, Nakashima Y et al (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9:293–299

    Article  CAS  Google Scholar 

  • Lagadinou ED, Sach A, Callahan K et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12:329–341

    Article  CAS  Google Scholar 

  • Li C, Thompson MA, Tamayo AT et al (2012) Over-expression of Thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma. Oncotarget 3:314–326

    Article  CAS  Google Scholar 

  • Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19

    Article  CAS  Google Scholar 

  • Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15:338–344

    Article  CAS  Google Scholar 

  • Menegon S, Columbano A, Giordano S (2016) The dual roles of NRF2 in cancer. Trends Mol Med 22:578–593

    Article  CAS  Google Scholar 

  • Moreb JS, Ucar D, Han S et al (2012) The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem Biol Interact 195:52–60

    Article  CAS  Google Scholar 

  • Moreb JS, Ucar-Bilyeu DA, Khan A (2017) Use of retinoic acid/aldehyde dehydrogenase pathway as potential targeted therapy against cancer stem cells. Cancer Chemother Pharmacol 79:295–301

    Article  CAS  Google Scholar 

  • Mudry RE, Fortney JE, York T, Hall BM, Gibson LF (2000) Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood 96:1926–1932

    Article  CAS  Google Scholar 

  • Muñoz-Galván S, Gutierrez G, Perez M, Carnero A (2015) MAP17 (PDZKIP1) expression determines sensitivity to the proteasomal inhibitor bortezomib by preventing cytoprotective autophagy and NFκB activation in breast cancer. Mol Cancer Ther 14:1454–1465

    Article  Google Scholar 

  • Najafi M, Mortezaee K, Majidpoor J (2019) Cancer stem cell (CSC) resistance drivers. Life Sci 234:116781

    Article  CAS  Google Scholar 

  • Naka K, Hoshii T, Muraguchi T et al (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463:676–680

    Article  CAS  Google Scholar 

  • Ni Z, Wang B, Dai X et al (2014) HCC cells with high levels of Bcl-2 are resistant to ABT-737 via activation of the ROS-JNK-autophagy pathway. Free Radic Biol Med 70:194–203

    Article  CAS  Google Scholar 

  • Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310:1842–1850

    Article  CAS  Google Scholar 

  • Orelio C, Dzierzak E (2007) Bcl-2 expression and apoptosis in the regulation of hematopoietic stem cells. Leuk Lymphoma 48:16–24

    Article  CAS  Google Scholar 

  • Piskounova E, Agathocleous M, Murphy MM et al (2015) Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527:186–191

    Article  CAS  Google Scholar 

  • Prieto-Vila M, Takahashi RU, Usuba W, Kohama I, Ochiya T (2017) Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci 18

    Google Scholar 

  • Raha D, Wilson TR, Peng J et al (2014) The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res 74:3579–3590

    Article  CAS  Google Scholar 

  • Salam DSDA, Thit EE, Teoh SH, Tan SY, Peh SC, Cheah S-C (2020) C-MYC, BCL2 and BCL6 Translocation in B-cell Non-Hodgkin Lymphoma Cases. J Cancer 11:190–198

    Article  Google Scholar 

  • Schibler J, Tomanek-Chalkley AM, Reedy JL et al (2016) Mitochondrial-targeted decyl-triphenylphosphonium enhances 2-deoxy-D-glucose mediated oxidative stress and clonogenic killing of multiple myeloma cells. PLoS One 11:e0167323

    Article  Google Scholar 

  • Silva A, Gírio A, Cebola I, Santos CI, Antunes F, Barata JT (2011) Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells. Leukemia 25:960–967

    Article  CAS  Google Scholar 

  • Susnow N, Zeng L, Margineantu D, Hockenbery DM (2009) Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol 19:42–49

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  • Takahashi A, Masuda A, Sun M, Centonze VE, Herman B (2004) Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull 62:497–504

    Article  CAS  Google Scholar 

  • Tome ME, Frye JB, Coyle DL et al (2012) Lymphoma cells with increased anti-oxidant defenses acquire chemoresistance. Exp Ther Med 3:845–852

    Article  CAS  Google Scholar 

  • Tong L, Chuang CC, Wu S, Zuo L (2015) Reactive oxygen species in redox cancer therapy. Cancer Lett 367:18–25

    Article  CAS  Google Scholar 

  • Uribe D, Torres Á, Rocha JD et al (2017) Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Mol Asp Med 55:140–151

    Article  CAS  Google Scholar 

  • Viale A, Pettazzoni P, Lyssiotis CA et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628–632

    Article  CAS  Google Scholar 

  • Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci USA 95:2956–2960

    Article  CAS  Google Scholar 

  • Vogler M (2012) BCL2A1: the underdog in the BCL2 family. Cell Death Differ 19:67–74

    Article  CAS  Google Scholar 

  • Wang XJ, Sun Z, Villeneuve NF et al (2008) Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235–1243

    Article  CAS  Google Scholar 

  • Wang J, Liu X, Qiu Y et al (2018) Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J Hematol Oncol 11:11

    Article  Google Scholar 

  • Wong RS, Cheong SK (2012) Leukaemic stem cells: drug resistance, metastasis and therapeutic implications. Malays J Pathol 34:77–88

    Google Scholar 

  • Wu S, Lu H, Bai Y (2019) Nrf2 in cancers: A double-edged sword. Cancer Med 8:2252–2267

    Article  Google Scholar 

  • Xu B, Wang S, Li R et al (2017) Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-kappaB and Nrf2. Cell Death Dis 8:e2797

    Article  CAS  Google Scholar 

  • Yamamori T, Yasui H, Yamazumi M et al (2012) Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med 53:260–270

    Article  CAS  Google Scholar 

  • Yang Y, Mallampati S, Sun B et al (2013) Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett 333:9–17

    Article  CAS  Google Scholar 

  • Zhao J (2016) Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol Ther 160:145–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Broto, G.E., da Silva, J.C., de Oliveira, S.T., Garbim, M.R., Oliveira, M.O., Panis, C. (2022). Oxidative Stress-Related Mechanisms That Mediate Chemoresistance in Cancer Stem Cells. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_101

Download citation

Publish with us

Policies and ethics