Skip to main content

Pharmacological Modeling of Gastrointestinal Disorders in Zebrafish for Drug Discovery and Development

  • Chapter
  • First Online:
Zebrafish Model for Biomedical Research

Abstract

Zebrafish as a pharmacological model is gaining popularity due to its similarity in both transcriptional and developmental physiology with humans. In this chapter, zebrafish as a relevant model for gastrointestinal tract (GIT) diseases including inflammatory bowel disease (IBD) and GIT cancers is outlined. Information on the relevance of zebrafish models in cancer metastasis, host-microbe interactions, and screening of new drugs is also included in this chapter. In IBD, zebrafish as a tool is used to understand both the pathogenesis and treatment outcomes such as immune suppression or disease regression through drug screening. TgBAC, a transgenic zebrafish line, has revealed two major factors which results into IBD including depletion of epigenetic repression as well as excessive production of tumor necrosis factor. The features of human IBD disease pathology are observed in chemically induced zebrafish models, which are well established and commonly used to test the new chemical entities (NCEs). In addition, zebrafish models are also used to understand IBD immunology including expression of chemokine responses which are difficult to investigate in murine models and to understand intestinal development and GIT transit. Factors such as high fertility, low maintenance, and physiological and developmental similarities in the GIT with humans make zebrafish an efficient model to explore GIT cancers. In addition, comparative genomics to humans, transparent body, and rapidly developing embryos are prominent factors for the successful use of zebrafish models in GIT cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer model system. Cancer Cell 1(3):229–231

    Article  CAS  PubMed  Google Scholar 

  • Arias-Jayo N, Alonso-Saez L, Ramirez-Garcia A, Pardo MA (2018) Zebrafish axenic larvae colonization with human intestinal microbiota. Zebrafish 15(2):96–106

    Article  PubMed  Google Scholar 

  • Astone M, Dankert EN, Alam SK, Hoeppner LH (2017) Fishing for cures: the alLURE of using zebrafish to develop precision oncology therapies. NPJ Precis Oncol 1(1):1–14

    Google Scholar 

  • Baeten JT, de Jong JL (2018) Genetic models of leukemia in zebrafish. Front Cell Dev Biol 6:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Balla KM, Lugo-Villarino G, Spitsbergen JM, Stachura DL, Hu Y, Bañuelos K, Romo-Fewell O, Aroian RV, Traver D (2010) Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116(19):3944–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297(2):374–386

    Article  CAS  PubMed  Google Scholar 

  • Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2(6):371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CD, Morris JP, Liu TX, Schulte-Merker S, Kanki JP (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102(2):407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos JL, Fearon ER, Hamilton SR, Verlaan–de Vries M, van Boom JH, van der Eb AJ, Vogelstein B (1987) Prevalence of ras gene mutations in human colorectal cancers. Nature 327(6120):293–297

    Article  CAS  PubMed  Google Scholar 

  • Brugman S (2016) The zebrafish as a model to study intestinal inflammation. Dev Comp Immunol 64:82–92

    Article  CAS  PubMed  Google Scholar 

  • Carten J, Farber S (2009) A new model system swims into focus: using the zebrafish to visualize intestinal lipid metabolism in vivo. Clin Lipidol 4(4):501–515

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang T-C, Wei P-L, Makondi PT, Chen W-T, Huang C-Y, Chang Y-J (2019) Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS One 14(1):e0210274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew TW, Liu XJ, Liu L, Spitsbergen JM, Gong Z, Low BC (2014) Crosstalk of Ras and rho: activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models. Oncogene 33(21):2717–2727

    Article  CAS  PubMed  Google Scholar 

  • Clarridge J, Musher DM, Fainstein V, Wallace R (1980) Extraintestinal human infection caused by Edwardsiella tarda. J Clin Microbiol 11(5):511–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa MM, Saraceni PR, Forn-Cuní G, Dios S, Romero A, Figueras A, Novoa B (2013) IL-22 is a key player in the regulation of inflammation in fish and involves innate immune cells and PI3K signaling. Dev Comp Immunol 41(4):746–755

    Article  CAS  PubMed  Google Scholar 

  • Crawford KC, Flores MV, Oehlers SH, Hall CJ, Crosier KE, Crosier PS (2011) Zebrafish heat shock protein a4 genes in the intestinal epithelium are up-regulated during inflammation. Genesis 49(12):905–911

    Article  CAS  PubMed  Google Scholar 

  • Davis DJ, Doerr HM, Grzelak AK, Busi SB, Jasarevic E, Ericsson AC, Bryda EC (2016) Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci Rep 6(1):1–11

    Article  CAS  Google Scholar 

  • Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10(3):252–256

    Article  CAS  PubMed  Google Scholar 

  • Dressman JB, Berardi LCD, Russell TL, Schmaltz SP, Barnett JL, Jarvenpaa KM (1990) Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 7(7):756–761

    Article  CAS  PubMed  Google Scholar 

  • Earley AM, Graves CL, Shiau CE (2018) Critical role for a subset of intestinal macrophages in shaping gut microbiota in adult zebrafish. Cell Rep 25(2):424–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117(4):e49–e56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etchin J, Kanki JP, Look AT (2011) Zebrafish as a model for the study of human cancer. Methods Cell Biol 105:309–337

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Thompson L, Lyu Z, Cameron TA, De Lay NR, Krachler AM, Ling J (2019) Optimal translational fidelity is critical for Salmonella virulence and host interactions. Nucleic Acids Res 47(10):5356–5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field HA, Ober EA, Roeser T, Stainier DYR (2003) Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 253(2):279–290

    Article  CAS  PubMed  Google Scholar 

  • Fleming A, Jankowski J, Goldsmith P (2010) In vivo analysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: a feasibility study. Inflamm Bowel Dis 16(7):1162–1172

    Article  PubMed  Google Scholar 

  • Flores E, Thompson L, Sirisaengtaksin N, Nguyen AT, Ballard A, Krachler A-M (2019) Using the protozoan Paramecium caudatum as a vehicle for food-borne infections in zebrafish larvae. J Vis Exp 143:e58949

    Google Scholar 

  • Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM (2020) The zebrafish as a model for gastrointestinal tract—microbe interactions. Cell Microbiol 22(3):e13152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraenkel PG, Gibert Y, Holzheimer JL, Lattanzi VJ, Burnett SF, Dooley KA, Wingert RA, Zon LI (2009) Transferrin-a modulates hepcidin expression in zebrafish embryos. Blood 113(12):2843–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebert A, Jepson M (1996) Is the epithelial origin of M cells controversial? Gastroenterology 111(4):1163

    Article  CAS  PubMed  Google Scholar 

  • Geiger BM, Gras-Miralles B, Ziogas DC, Karagiannis AK, Zhen A, Fraenkel P, Kokkotou E (2013) Intestinal upregulation of melanin-concentrating hormone in TNBS-induced enterocolitis in adult zebrafish. PLoS One 8(12):e83194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goyette P, Lefebvre C, Ng A, Brant S, Cho J, Duerr R (2008) Gene-centric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis. Mucosal Immunol 1(2):131–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gracey M, Burke V, Robinson J (1982) Aeromonas-associated gastroenteritis. Lancet 320(8311):1304–1306

    Article  Google Scholar 

  • Grayfer L, Belosevic M (2009) Molecular characterization of novel interferon gamma receptor 1 isoforms in zebrafish (Danio rerio) and goldfish (Carassius auratus L.). Mol Immunol 46(15):3050–3059

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Wei H, Hu J, Sun S, Long J, Wang X (2015a) U0126 inhibits pancreatic cancer progression via the KRAS signaling pathway in a zebrafish xenotransplantation model. Oncol Rep 34(2):699–706

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Peng B, Song M, Wu C-w, Yang M-j, Zhang J-Y, Li H (2015b) Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. Fish Shellfish Immunol 47(2):664–673

    Article  CAS  PubMed  Google Scholar 

  • Hanyang L, Xuanzhe L, Xuyang C, Yujia Q, Jiarong F, Jun S, Zhihua R (2017) Application of zebrafish models in inflammatory bowel disease. Front Immunol 8:501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haramis APG, Hurlstone A, van der Velden Y, Begthel H, van den Born M, Offerhaus GJA, Clevers HC (2006) Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia. EMBO Rep 7(4):444–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvie EA, Huttenlocher A (2015) Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 98(4):523–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hason M, Bartůněk P (2019) Zebrafish models of cancer—new insights on modeling human cancer in a non-mammalian vertebrate. Genes 10(11):935

    Article  CAS  PubMed Central  Google Scholar 

  • Holmberg A, Olsson C, Hennig GW (2007) TTX-sensitive and TTX-insensitive control of spontaneous gut motility in the developing zebrafish (Danio rerio) larvae. J Exp Biol 210(6):1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Hossain S, De Silva B, Dahanayake P, Heo GJ (2018) Characterization of virulence properties and multi-drug resistance profiles in motile Aeromonas spp. isolated from zebrafish (Danio rerio). Lett Appl Microbiol 67(6):598–605

    Article  CAS  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunção JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Ürün Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberländer M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nüsslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugot J, Chamaillard M, Zouali H, Lesage S, Cezard J, Belaiche J, Almer S, Tysk C, O Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucinerich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603

    Article  CAS  PubMed  Google Scholar 

  • Hurlstone AF, Haramis A-PG, Wienholds E, Begthel H, Korving J, Van Eeden F, Cuppen E, Zivkovic D, Plasterk RH, Clevers H (2003) The Wnt/β-catenin pathway regulates cardiac valve formation. Nature 425(6958):633–637

    Article  CAS  PubMed  Google Scholar 

  • Jevtov I, Samuelsson T, Yao G, Amsterdam A, Ribbeck K (2014) Zebrafish as a model to study live mucus physiology. Sci Rep 4(1):1–6

    Google Scholar 

  • Johnston JM, Becker SF, McFarland LM (1986) Gastroenteritis in patients with stool isolates of Vibrio vulnificus. Am J Med 80(2):336–338

    Article  CAS  PubMed  Google Scholar 

  • Karna P, Rida PC, Turaga RC, Gao J, Gupta M, Fritz A, Werner E, Yates C, Zhou J, Aneja R (2012) A novel microtubule-modulating agent EM011 inhibits angiogenesis by repressing the HIF-1α axis and disrupting cell polarity and migration. Carcinogenesis 33(9):1769–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konantz M, Balci TB, Hartwig UF, Dellaire G, André MC, Berman JN, Lengerk C (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266(1):124–137

    Article  PubMed  Google Scholar 

  • Lam S, Chua H, Gong Z, Lam T, Sin Y (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28(1):9–28

    Article  CAS  PubMed  Google Scholar 

  • Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y, Zhan H, Govindarajan KR, Lee S, Mathavan S (2006) Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24(1):73–75

    Article  CAS  PubMed  Google Scholar 

  • Langenau DM, Zon LI (2005) The zebrafish: a new model of T-cell and thymic development. Nat Rev Immunol 5(4):307–317

    Article  CAS  PubMed  Google Scholar 

  • Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299(5608):887–890

    Article  CAS  PubMed  Google Scholar 

  • Le X, Langenau DM, Keefe MD, Kutok JL, Neuberg DS, Zon LI (2007) Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish. Proc Natl Acad Sci U S A 104(22):9410–9415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Wendy W (2017) Antibiotic and heavy metal resistance of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp.) coinfected with motile aeromonas septicemia and edwardsiellosis. Vet World 10(7):803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SLC, Rouhi P, Jensen LD, Zhang D, Ji H, Hauptmann G, Ingham P, Cao Y (2009) Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci U S A 106(46):19485–19490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letrado P, de Miguel I, Lamberto I, Díez-Martínez R, Oyarzabal J (2018) Zebrafish: speeding up the cancer drug discovery process. Cancer Res 78(21):6048–6058

    Article  CAS  PubMed  Google Scholar 

  • Lewis KL, Del Cid N, Traver D (2014) Perspectives on antigen presenting cells in zebrafish. Dev Comp Immunol 46(1):63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lickwar CR, Camp JG, Weiser M, Cocchiaro JL, Kingsley DM, Furey TS, Sheikh SZ, Rawls JF (2017) Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells. PLoS Biol 15(8):e2002054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367

    Article  CAS  PubMed  Google Scholar 

  • Lieschke GJ, Oates AC, Crowhurst MO, Ward AC, Layton JE (2001) Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 98(10):3087–3096

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Chen JR, Hsu CH, Li YH, Chen YM, Lin CY, Huang SJ, Chang ZK, Chen YC, Lin CH (2012) A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 56(6):2268–2276

    Article  CAS  PubMed  Google Scholar 

  • Løvmo SD, Speth MT, Repnik U, Koppang EO, Griffiths GW, Hildahl JP (2017) Translocation of nanoparticles and Mycobacterium marinum across the intestinal epithelium in zebrafish and the role of the mucosal immune system. Dev Comp Immunol 67:508–518

    Article  PubMed  CAS  Google Scholar 

  • Lu J-W, Yang W-Y, Tsai S-M, Lin Y-M, Chang P-H, Chen J-R, Wang H-D, Wu J-L, Jin S-LC, Yuh C-H (2013) Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PLoS One 8(10):e76951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marjoram L, Alvers A, Deerhake ME, Bagwell J, Mankiewicz J, Cocchiaro JL, Beerman RW, Willer J, Sumigray KD, Katsanis N (2015) Epigenetic control of intestinal barrier function and inflammation in zebrafish. Proc Natl Acad Sci U S A 112(9):2770–2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathias JR, Dodd ME, Walters KB, Yoo SK, Ranheim EA, Huttenlocher A (2009) Characterization of zebrafish larval inflammatory macrophages. Dev Comp Immunol 33(11):1212–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoguchi A (2012) Animal models of inflammatory bowel disease. Prog Mol Biol Transl Sci 105:263–320

    Article  CAS  PubMed  Google Scholar 

  • Moos V, Schmidt C, Geelhaar A, Kunkel D, Allers K, Schinnerling K, Loddenkemper C, Fenollar F, Moter A, Raoult D (2010) Impaired immune functions of monocytes and macrophages in Whipple’s disease. Gastroenterology 138(1):210–220

    Article  CAS  PubMed  Google Scholar 

  • Neal JT, Peterson TS, Kent ML, Guillemin K (2013) H. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model. Dis Model Mech 6(3):802–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng AN, de Jong-Curtain TA, Mawdsley DJ, White SJ, Shin J, Appel B, Dong PDS, Stainier DY, Heath JK (2005) Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286(1):114–135

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AT, Emelyanov A, Koh CHV, Spitsbergen JM, Lam SH, Mathavan S, Parinov S, Gong Z (2011) A high level of liver-specific expression of oncogenic KrasV12 drives robust liver tumorigenesis in transgenic zebrafish. Dis Model Mech 4(6):801–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen AT, Emelyanov A, Koh CHV, Spitsbergen JM, Parinov S, Gong Z (2012) An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 5(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Oehlers SH, Flores MV, Okuda KS, Hall CJ, Crosier KE, Crosier PS (2011a) A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents. Dev Dyn 240(1):288–298

    Article  CAS  PubMed  Google Scholar 

  • Oehlers SH, Flores MV, Hall CJ, Swift S, Crosier KE, Crosier PS (2011b) The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish. Dis Model Mech 4(6):832–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oehlers SH, Flores MV, Chen T, Hall CJ, Crosier KE, Crosier PS (2011c) Topographical distribution of antimicrobial genes in the zebrafish intestine. Dev Comp Immunol 35(3):385–391

    Article  CAS  PubMed  Google Scholar 

  • Oehlers SH, Flores MV, Hall CJ, Crosier KE, Crosier PS (2012) Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis. Dis Model Mech 5(4):457–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura Y, Bonen D, Inohara N, Nicolae D, Chen F, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr R (2001) A frameshift mutation in NOD2 associated with NOD2 wild type CEACAM6 receptor Ileal colonization by AIEC NOD2 mutant susceptibility to Crohn's disease. Nature 411:603–606

    Article  CAS  PubMed  Google Scholar 

  • Pack M (2015) Fishing for missing heritability in IBD. Nat Rev Gastroenterol Hepatol 12(6):318–320

    Article  PubMed  Google Scholar 

  • Pack M, Solnica-Krezel L, Malicki J, Neuhauss S, Schier AF, Stemple DL, Driever W, Fishman MC (1996) Mutations affecting development of zebrafish digestive organs. Development 123(1):321–328

    Article  CAS  PubMed  Google Scholar 

  • Page DM, Wittamer V, Bertrand JY, Lewis KL, Pratt DN, Delgado N, Schale SE, McGue C, Jacobsen BH, Doty A (2013) An evolutionarily conserved program of B-cell development and activation in zebrafish. Blood 122(8):e1–e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pai W-Y, Hsu C-C, Lai C-Y, Chang T-Z, Tsai Y-L, Her GM (2013) Cannabinoid receptor 1 promotes hepatic lipid accumulation and lipotoxicity through the induction of SREBP-1c expression in zebrafish. Transgenic Res 22(4):823–838

    Article  CAS  PubMed  Google Scholar 

  • Parng C, Seng WL, Semino C, McGrath P (2002) Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 1(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Payne E, Look T (2009) Zebrafish modelling of leukaemias. Br J Haematol 146(3):247–256

    Article  CAS  PubMed  Google Scholar 

  • Pressley ME, Phelan PE III, Witten PE, Mellon MT, Kim CH (2005) Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev Comp Immunol 29(6):501–513

    Article  CAS  PubMed  Google Scholar 

  • Rauta PR, Nayak B, Das S (2012) Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunol Lett 148(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci 101(13):4596–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127(2):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy K, Yedery R, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    Article  CAS  PubMed  Google Scholar 

  • Roel M, Rubiolo JA, Guerra-Varela J, Silva SB, Thomas OP, Cabezas-Sainz P, Sánchez L, López R, Botana LM (2016) Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model. Oncotarget 7(50):83071

    Article  PubMed  PubMed Central  Google Scholar 

  • Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5(10):1595–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rombout J, Lamers C, Helfrich M, Dekker A, Taverne-Thiele J (1985) Uptake and transport of intact macromolecules in the intestinal epithelium of carp (Cyprinus carpio L.) and the possible immunological implications. Cell Tissue Res 239(3):519–530

    Article  CAS  PubMed  Google Scholar 

  • Runft DL, Mitchell KC, Abuaita BH, Allen JP, Bajer S, Ginsburg K, Neely MN, Withey JH (2014) Zebrafish as a natural host model for Vibrio cholerae colonization and transmission. Appl Environ Microbiol 80(5):1710–1717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan S, Willer J, Marjoram L, Bagwell J, Mankiewicz J, Leshchiner I, Goessling W, Bagnat M, Katsanis N (2013) Rapid identification of kidney cyst mutations by whole exome sequencing in zebrafish. Development 140(21):4445–4451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval IT, Delacruz RGC, Miller BN, Hill S, Olson KA, Gabriel AE, Boyd K, Satterfield C, Van Remmen H, Rutter J (2017) A metabolic switch controls intestinal differentiation downstream of adenomatous polyposis coli (APC). elife 6:e22706

    Article  PubMed  PubMed Central  Google Scholar 

  • Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12(3):277–288

    Article  CAS  PubMed  Google Scholar 

  • Stoletov K, Klemke R (2008) Catch of the day: zebrafish as a human cancer model. Oncogene 27(33):4509–4520

    Article  CAS  PubMed  Google Scholar 

  • Stones DH, Fehr AG, Thompson L, Rocha J, Perez-Soto N, Madhavan VT, Voelz K, Krachler AM (2017) Zebrafish (Danio rerio) as a vertebrate model host to study colonization, pathogenesis, and transmission of foodborne Escherichia coli O157. mSphere 2(5):e00365-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Nguyen AT, Spitsbergen JM, Gong Z (2015) Myc-induced liver tumors in transgenic zebrafish can regress in tp53 null mutation. PLoS One 10(1):e0117249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor AM, Zon LI (2009) Zebrafish tumor assays: the state of transplantation. Zebrafish 6(4):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C, Dohnalová L, Braverman S, Rozin S, Malitsky S (2016) Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540(7634):544–551

    Article  CAS  PubMed  Google Scholar 

  • Thakur PC, Davison JM, Stuckenholz C, Lu L, Bahary N (2014) Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish. Dis Model Mech 7(1):93–106

    CAS  PubMed  Google Scholar 

  • Toh MC, Goodyear M, Daigneault M, Allen-Vercoe E, Van Raay TJ (2013) Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract. Zebrafish 10(2):194–198

    Article  PubMed  Google Scholar 

  • Tran TC, Sneed B, Haider J, Blavo D, White A, Aiyejorun T, Baranowski TC, Rubinstein AL, Doan TN, Dingledine R (2007) Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res 67(23):11386–11392

    Article  CAS  PubMed  Google Scholar 

  • Tsering J, Hu X (2018) Triphala suppresses growth and migration of human gastric carcinoma cells in vitro and in a zebrafish xenograft model. Biomed res international 2018:7046927

    Article  CAS  Google Scholar 

  • Udayangani R, Dananjaya S, Fronte B, Kim C-H, Lee J, De Zoysa M (2017) Feeding of nano scale oats β-glucan enhances the host resistance against Edwardsiella tarda and protective immune modulation in zebrafish larvae. Fish Shellfish Immunol 60:72–77

    Article  CAS  PubMed  Google Scholar 

  • Umesaki Y, Setoyama H, Matsumoto S, Imaoka A, Itoh K (1999) Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect Immun 67(7):3504–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Vaart M, van Soest JJ, Spaink HP, Meijer AH (2013) Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system. Dis Model Mech 6(3):841–854

    PubMed  PubMed Central  Google Scholar 

  • van Dieren JM, Simons‐Oosterhuis Y, Raatgeep H, Lindenbergh‐Kortleve DJ, Lambers ME, van der Woude CJ, Kuipers EJ, Snoek GT, Potman R, Hammad H (2011) Anti-inflammatory actions of phosphatidylinositol. Eur J Immunol 41(4):1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Van Limbergen J, Radford-Smith G, Satsangi J (2014) Advances in IBD genetics. Nat Rev Gastroenterol Hepatol 11(6):372

    Article  PubMed  CAS  Google Scholar 

  • Wallace KN, Akhter S, Smith EM, Lorent K, Pack M (2005) Intestinal growth and differentiation in zebrafish. Mech Dev 122(2):157–173

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Du J, Lam SH, Mathavan S, Matsudaira P, Gong Z (2010) Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine. BMC Genomics 11(1):1–13

    Article  CAS  Google Scholar 

  • White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White R, Rose K, Zon L (2013) Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 13(9):624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrighton PJ, Oderberg IM, Goessling W (2019) There is something fishy about liver cancer: zebrafish models of hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol 8(3):347–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang J, Yang H, Che C, Zou H, Yang H, Wei Y, Quan J, Zhang H, Yang Z, Lin S (2009) Identifying tumor cell growth inhibitors by combinatorial chemistry and zebrafish assays. PLoS One 4(2):e4361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Tomkovich S, Jobin C (2014) Could a swimming creature inform us on intestinal diseases? Lessons from zebrafish. Inflamm Bowel Dis 20(5):956–966

    Article  PubMed  Google Scholar 

  • Yang H-T, Zou S-S, Zhai L-J, Wang Y, Zhang F-M, An L-G, Yang G-W (2017) Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine. Fish Shellfish Immunol 71:35–42

    Article  CAS  PubMed  Google Scholar 

  • Zhan H, Spitsbergen JM, Qing W, Wu YL, Paul TA, Casey JW, Her GM, Gong Z (2010) Transgenic expression of walleye dermal sarcoma virus rv-cyclin gene in zebrafish and its suppressive effect on liver tumor development after carcinogen treatment. Mar Biotechnol 12(6):640–649

    Article  CAS  Google Scholar 

  • Zhu L-Y, Lin A-f, Shao T, Nie L, Dong W-r, Xiang L-x, Shao J-z (2014) B cells in teleost fish act as pivotal initiating APCs in priming adaptive immunity: an evolutionary perspective on the origin of the B-1 cell subset and B7 molecules. J Immunol 192(6):2699–2714

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7(12):1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Dean, Faculty of Veterinary Science, P.V. Narsimha Rao Telangana Veterinary University (PVNRTVU), Hyderabad, Telangana.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V. et al. (2022). Pharmacological Modeling of Gastrointestinal Disorders in Zebrafish for Drug Discovery and Development. In: Bhandari, P.R., Bharani, K.K., Khurana, A. (eds) Zebrafish Model for Biomedical Research . Springer, Singapore. https://doi.org/10.1007/978-981-16-5217-2_19

Download citation

Publish with us

Policies and ethics