Skip to main content

Biomass, Bioenergy, and Biofuels

  • Chapter
  • First Online:
Industrial Microbiology and Biotechnology

Abstract

The greatest challenge for humanity is the continuous provision of a sustainable source of energy while considering the environmental concerns of global climate change. These factors, along with the rising prices of fossil fuels, require research into various sources for the production of environmentally friendly renewable energy. Biomass has emerged as a key source in the contribution of renewable energy to meet future energy needs in the form of biofuels. It is a potential candidate for the production of electricity, heat, and transport fuels. The proper management of bioenergy will ensure energy security in the future and reduction of environmental pollution and realize the potential of organic waste, for economic and social development. The chapter gives an insight into the potential of biomass and technologies used for its conversion into bioenergy. The newly found use of algae and microbial cells as fuel has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABE:

Acetone-butanol-ethanol

AD:

Anaerobic digestion

CHP:

Combined heat and power

DMC:

Direct microbial conversion

EU:

European Union

MSW:

Municipal solid wastes

PUFA:

Polyunsaturated fatty acid

SSF:

Solid state fermentation

References

  • Abdelaal AS, Jawed K, Yazdani SS (2019) CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium. J Ind Microbiol Biotechnol 46(7):965–975

    CAS  PubMed  Google Scholar 

  • Adams P, Bridgwater T, Lea-Langton A, Ross A, Watson I (2018) Biomass conversion technologies. In: Greenhouse gas balances of bioenergy systems. Elsevier, pp 107–139

    Google Scholar 

  • Agrawal K, Bhatt A, Bhardwaj N, Kumar B, Verma P (2020) Algal biomass: potential renewable feedstock for biofuels production–part I. In: Biofuel production technologies: critical analysis for sustainability. Springer, Singapore, pp 203–237

    Google Scholar 

  • Banse M, Van Meijl H, Tabeau A, Woltjer G, Hellmann F, Verburg PH (2011) Impact of EU biofuel policies on world agricultural production and land use. Biomass Bioenergy 35(6):2385–2390

    Google Scholar 

  • Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23(1):31–42

    CAS  Google Scholar 

  • Benjaphokee S, Koedrith P, Auesukaree C, Asvarak T, Sugiyama M, Kaneko Y, Boonchird C, Harashima S (2012) CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae. New Biotechnol 29(2):166–176

    CAS  Google Scholar 

  • Bhardwaj N, Agrawal K, Verma P (2020a) Algal biofuels: an economic and effective alternative of fossil fuels. In: Microbial strategies for techno-economic biofuel production. Springer, pp 59–83

    Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2020b) Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. Bioresour Technol Rep 10:100352

    Google Scholar 

  • Bhavanam A, Sastry RC (2011) Biomass gasification processes in downdraft fixed bed reactors: a review. Int J Chem Eng Appl 2(6):425

    CAS  Google Scholar 

  • Bielski S, Dubis B, Jankowski K (2015) The energy efficiency of production and conversion of winter triticale biomass into biofuels. Przem Chem 94(10):1798–1801

    CAS  Google Scholar 

  • Brodziński Z, Kryszk H, Kurowska K (2014) Market of producers and processors of agricultural biomass for energy purposes. Pol J Environ Stud 23(2):619–627

    Google Scholar 

  • Burstein D, Sun CL, Brown CT, Sharon I, Anantharaman K, Probst AJ, Thomas BC, Banfield JF (2016) Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat Commun 7(1):1–8

    Google Scholar 

  • Buxy S (2014) Techniques to enhance methane production from terrestrial (sugarbeet) and algal (Nannochloropsis oculata) biomass. University of Florida

    Google Scholar 

  • Carver SM, Hulatt CJ, Thomas DN, Tuovinen O (2011) Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production. Biodegradation 22(4):805–814

    CAS  PubMed  Google Scholar 

  • Chaemchuen S, Zhou K, Verpoort F (2016) From biogas to biofuel: materials used for biogas cleaning to biomethane. ChemBioEng 3(6):250–265

    Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3(5):415–431

    PubMed  PubMed Central  Google Scholar 

  • Chaturvedi V, Goswami RK, Verma P (2021) Genetic engineering for enhancement of biofuel production in microalgae. In: Biorefineries: a step towards renewable and clean energy. Springer, pp 539–559

    Google Scholar 

  • Chen L, Liu T, Zhang W, Chen X, Wang J (2012) Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol 111:208–214

    CAS  PubMed  Google Scholar 

  • Chowdhury H, Loganathan B, Mustary I, Alam F, Mobin SM (2019) Algae for biofuels: the third generation of feedstock. Elsevier, Second and third generation of feedstocks, pp 323–344

    Google Scholar 

  • Ciudad G, Rubilar O, Azócar L, Toro C, Cea M, Torres Á, Ribera A, Navia R (2014) Performance of an enzymatic extract in Botryococcus braunii cell wall disruption. J Biosci Bioeng 117(1):75–80

    CAS  PubMed  Google Scholar 

  • Cucchiella F, D’Adamo I, Gastaldi M (2017) Biomethane: a renewable resource as vehicle fuel. Resources 6(4):58

    Google Scholar 

  • Demirbas T, Demirbas A (2010) Bioenergy, green energy. Biomass and biofuels. Energy Sources A Recovery Util Environ Eff 32(12):1067–1075

    CAS  Google Scholar 

  • Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9(1):87–94

    Google Scholar 

  • Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley

    Google Scholar 

  • Dien BS, Nichols NN, O'bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84(1):181–196

    PubMed  Google Scholar 

  • Dornburg V, van Vuuren D, van de Ven G, Langeveld H, Meeusen M, Banse M, van Oorschot M, Ros J, van den Born GJ, Aiking H (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energ Environ Sci 3(3):258–267

    Google Scholar 

  • Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (2011) Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  • Frigon J-C, Matteau-Lebrun F, Abdou RH, McGinn PJ, O’Leary SJ, Guiot S (2013) Screening microalgae strains for their productivity in methane following anaerobic digestion. Appl Energy 108:100–107

    CAS  Google Scholar 

  • Garba A (2020) Biomass conversion technologies for bioenergy generation: an introduction. Biomass, IntechOpen

    Google Scholar 

  • González-Ramos D, De Vries AR, Grijseels SS, Van Berkum MC, Swinnen S, Van Den Broek M, Nevoigt E, Daran JM, Pronk JT, Van Maris AJ (2016) A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels 9(1):1–8

    Google Scholar 

  • Goswami RK, Mehariya S, Verma P, Lavecchia R, Zuorro A (2021) Microalgae-based biorefineries for sustainable resource recovery from wastewater. J Water Process Eng 40:101747. https://doi.org/10.1016/j.jwpe.2020.101747

    Article  Google Scholar 

  • Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517

    CAS  Google Scholar 

  • Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68(1):53–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanifzadeh M, Nabati Z, Longka P, Malakul P, Apul D, Kim D-S (2017) Life cycle assessment of superheated steam drying technology as a novel cow manure management method. J Environ Manage 199:83–90

    PubMed  Google Scholar 

  • Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222(3):769–774

    CAS  PubMed  Google Scholar 

  • Harish KR, Srijana M, Madhusudhan RD, Gopal R (2010) Coculture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. Afr J Biotechnol 9(13):1926–1934

    Google Scholar 

  • Hossain AS, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254

    CAS  Google Scholar 

  • IEA Bioenergy Task 37 (2018) Green gas-facilitating a future green gas grid through the production of renewable gas

    Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77(6):1305–1316

    CAS  PubMed  Google Scholar 

  • Jin C, Yao M, Liu H, Chia-fon FL, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev 15(8):4080–4106

    CAS  Google Scholar 

  • John RP, Anisha G, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193

    CAS  PubMed  Google Scholar 

  • Johnston J (2008) New world for biofuels. Energy Law 86:10–14

    Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    CAS  PubMed  Google Scholar 

  • Kataki R, Chutia RS, Mishra M, Bordoloi N, Saikia R, Bhaskar T (2015) Feedstock suitability for thermochemical processes. Elsevier, Recent advances in thermo-chemical conversion of biomass, pp 31–74

    Google Scholar 

  • Kiran B, Kumar R, Deshmukh D (2014) Perspectives of microalgal biofuels as a renewable source of energy. Energ Convers Manage 88:1228–1244

    CAS  Google Scholar 

  • Kumar B, Verma P (2020a) Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crops Prod 154:112607. https://doi.org/10.1016/j.indcrop.2020.112607

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2020b) Application of hydrolytic enzymes in biorefinery and its future prospects. In: Microbial strategies for techno-economic biofuel production. Springer, pp 59–83

    Google Scholar 

  • Kumar B, Verma P (2021a) Biomass-based biorefineries: an important architype towards a circular economy. Fuel:119622

    Google Scholar 

  • Kumar B, Verma P (2021b) Techno-economic assessment of biomass-based integrated biorefinery for energy and value-added product. In: Biorefineries: a step towards renewable and clean energy. Springer, pp 581–616

    Google Scholar 

  • Kumar M, Goyal Y, Sarkar A, Gayen K (2012) Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl Energy 93:193–204

    CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020a) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol 199:106244

    CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Verma P (2020b) Bioethanol production: generation-based comparative status measurements. In: Biofuel production technologies: critical analysis for sustainability. Springer, Singapore, pp 155–201

    Google Scholar 

  • Lamed R, Bayer EA (1988) The cellulosome of Clostridium thermocellum. Adv Appl Microbiol 33:1–46

    Google Scholar 

  • Lee SY, Sankaran R, Chew KW, Tan CH, Krishnamoorthy R, Chu D-T, Show P-L (2019) Waste to bioenergy: a review on the recent conversion technologies. BMC Energy 1(1):1–22

    Google Scholar 

  • Lehmann D, Lütke-Eversloh T (2011) Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway. Metab Eng 13(5):464–473

    CAS  PubMed  Google Scholar 

  • Lewis JA, Elkon IM, McGee MA, Higbee AJ, Gasch AP (2010) Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186(4):1197–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C (2017) Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels 10(1):1–4

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Xie X, Liu W, Xu H, Cao Y (2020) Consolidated bioprocess for bioethanol production from lignocellulosic biomass using Clostridium thermocellum DSM 1237. Bioresources 15(4):8355–8368

    CAS  Google Scholar 

  • Long H, Li X, Wang H, Jia J (2013) Biomass resources and their bioenergy potential estimation: a review. Renew Sustain Energy Rev 26:344–352

    Google Scholar 

  • Margareta W, Nagarajan D, Chang J-S, Lee D-J (2020) Dark fermentative hydrogen production using macroalgae (Ulva sp.) as the renewable feedstock. Appl Energy 262:114574

    CAS  Google Scholar 

  • Markov S, Thomas A, Bazin M, Hall DJ (1997) Photoproduction of hydrogen by cyanobacteria under partial vacuum in batch culture or in a photobioreactor. Int J Hydrog Energy 22(5):521–524

    CAS  Google Scholar 

  • Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy 34(17):7404–7416

    CAS  Google Scholar 

  • McKendry PJB (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54

    CAS  PubMed  Google Scholar 

  • Mehariya S, Goswami R, Verma P, Lavecchia R, Zuorro A (2021) Integrated approach for wastewater treatment and biofuel production in microalgae biorefineries. Energies 14(8):2282. https://doi.org/10.3390/en14082282

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110(1):85–93

    CAS  PubMed  Google Scholar 

  • Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71(2):855–863

    CAS  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7):778–785

    CAS  PubMed  Google Scholar 

  • Mona S, Kumar SS, Kumar V, Parveen K, Saini N, Deepak B, Pugazhendhi A (2020) Green technology for sustainable biohydrogen production (waste to energy): a review. Sci Total Environ 728:138481

    CAS  PubMed  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56

    CAS  PubMed  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai A (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597

    CAS  Google Scholar 

  • Nakayama SI, Kosaka T, Hirakawa H, Matsuura K, Yoshino S, Furukawa K (2008) Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4. Appl Microbiol Biotechnol 78(3):483–493

    CAS  PubMed  Google Scholar 

  • Nguyen TH, Park S, Jeong J, Shin YS, Sim SJ, Jin E (2020) Enhancing lipid productivity by modulating lipid catabolism using the CRISPR-Cas9 system in Chlamydomonas. J Appl Phycol 32(5):2829–2840

    CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68

    CAS  Google Scholar 

  • Özçimen D, İnan B, Biernat K (2015) An overview of bioethanol production from algae. In: Biernat K (ed) Biofuels—status and perspective. InTech, Croatia, pp 141–162

    Google Scholar 

  • Palop JJ, Mucke L, Roberson ED (2010) Quantifying biomarkers of cognitive dysfunction and neuronal network hyperexcitability in mouse models of Alzheimer’s disease: depletion of calcium-dependent proteins and inhibitory hippocampal remodeling. In: Alzheimer’s disease and frontotemporal dementia. Springer, pp 245–262

    Google Scholar 

  • Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L, Tong D, Qing R, Fan Y (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 101(12):4593–4599

    CAS  PubMed  Google Scholar 

  • Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T (1995) Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Mol Microbiol 15(5):795–802

    CAS  PubMed  Google Scholar 

  • Patel M, Zhang X, Kumar A (2016) Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review. Renew Sustain Energy Rev 53:1486–1499

    CAS  Google Scholar 

  • Pathak B, Chaudhari S, Fulekar M (2013) Biomass-resource for sustainable development. Int J Adv Res Technol 2(6):271–287

    Google Scholar 

  • Ramey D (2004) Butanol advances in biofuels. The Light Party

    Google Scholar 

  • Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA, Zharmukhamedov SK, Nam HG, Zayadan BK, Bruce BD, Hou H, Allakhverdiev SI (2017) Biofuel production: challenges and opportunities. Int J Hydrog Enenrgy 42(12):8450–8461

    CAS  Google Scholar 

  • Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2(1):152–195

    Google Scholar 

  • Sansaniwal S, Pal K, Rosen M, Tyagi S (2017) Recent advances in the development of biomass gasification technology: a comprehensive review. Renew Sustain Energy Rev 72:363–384

    CAS  Google Scholar 

  • Saratale GD, Saratale RG, Banu JR, Chang J-S (2019) Biohydrogen production from renewable biomass resources. In: Biohydrogen. Elsevier, pp 247–277

    Google Scholar 

  • Sen U, Shakdwipee M, Banerjee R (2008) Status of biological hydrogen production. J Sci Ind Res 67:980–993

    CAS  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 105(37):13769–13774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11(1):11–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580

    CAS  PubMed  Google Scholar 

  • Singh L, Mahapatra DM (2019) Waste to sustainable energy: MFCs–prospects through prognosis. CRC Press

    Google Scholar 

  • Singhvi MS, Chaudhari S, Gokhale DV (2014) Lignocellulose processing: a current challenge. RSC Adv 4(16):8271–8277

    CAS  Google Scholar 

  • Srivastava RK, Shetti NP, Reddy KR, Aminabhavi T (2020) Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ Chem Lett 18(4):1049–1072

    CAS  Google Scholar 

  • Stevens D (2001) Hot gas conditioning: recent progress with larger-scale biomass gasification systems; update and summary of recent progress

    Google Scholar 

  • Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38(9):4897–4902

    CAS  Google Scholar 

  • Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng 86(1):38–43

    CAS  Google Scholar 

  • Ulaganathan K, Goud S, Reddy M, Kayalvili U (2017) Genome engineering for breaking barriers in lignocellulosic bioethanol production. Renew Sust Energ Rev 74:1080–1107

    CAS  Google Scholar 

  • Uzoejinwa BB, He X, Wang S, Abomohra AE-F, Hu Y, Wang Q (2018) Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide. Energy Convers Manage 163:468–492

    CAS  Google Scholar 

  • Vardon DR, Sharma B, Scott J, Yu G, Wang Z, Schideman L, Zhang Y, Strathmann T (2011) Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour Technol 102(17):8295–8303

    CAS  PubMed  Google Scholar 

  • Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann T (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187

    CAS  PubMed  Google Scholar 

  • Vasić K, Knez Ž, Leitgeb M (2021) Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules 26(3):753

    PubMed  PubMed Central  Google Scholar 

  • Vergara-Fernández A, Vargas G, Alarcón N, Velasco A (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Front Environ Sci Eng 32(4):338–344

    Google Scholar 

  • Veza I, Said MFM, Latiff Z (2021) Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass Bioenergy 144:105919

    CAS  Google Scholar 

  • Wang C, Chang C, Chu C, Lee D, Chang B-V, Liao C, Tay J (2003) Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res 37(11):2789–2793

    CAS  PubMed  Google Scholar 

  • Wang H, Ji C, Bi S, Zhou P, Chen L, Liu T (2014) Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresour Technol 172:169–173

    CAS  PubMed  Google Scholar 

  • Yamada R, Tanaka T, Ogino C, Kondo A (2010) Gene copy number and polyploidy on products formation in yeast. Appl Microbiol Biotechnol 88(4):849–857

    CAS  PubMed  Google Scholar 

  • Yu G, Zhang Y, Schideman L, Funk T, Wang Z (2011) Hydrothermal liquefaction of low lipid content microalgae into bio-crude oil. Trans ASABE 54(1):239–246

    Google Scholar 

  • Zabed H, Sahu J, Suely A, Boyce A, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501

    CAS  Google Scholar 

  • Zheng Z, Li C, Liu H, Zhang Y, Zhong X, Yao M (2015) Experimental study on diesel conventional and low temperature combustion by fueling four isomers of butanol. Fuel 141:109–119

    CAS  Google Scholar 

  • Zhu T, Curtis J, Clancy M (2019) Promoting agricultural biogas and biomethane production: lessons from cross-country studies. Renew Sustain Energy Rev 114:109332

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Microbiology, Sikkim University, for providing the computational infrastructure and central library facilities for procuring references.

Conflict of Interest Statement

The authors declare that the study was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, A.K., Chettri, D., Verma, A.K. (2022). Biomass, Bioenergy, and Biofuels. In: Verma, P. (eds) Industrial Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-5214-1_16

Download citation

Publish with us

Policies and ethics