Skip to main content

Optimal Variable Amplitudes Input Shaping Control for Slew Maneuver of Flexible Spacecraft

  • Chapter
  • First Online:
Rigid-Flexible Coupling Dynamics and Control of Flexible Spacecraft with Time-Varying Parameters
  • 354 Accesses

Abstract

During the attitude maneuver of the flexible spacecraft, the attitude movement of the spacecraft body will excite the elastic vibration of the flexible attachment [1–3]. In return, the vibration would induce attitude oscillation after maneuver, which will downgrade the performance of payloads in spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farrenkopf, R. L. (2015). Optimal open-loop maneuver profiles for flexible spacecraft [J]. Journal of Guidance & Control, 1(6), 272–80.

    Google Scholar 

  2. Meirovitch, L., & Kwak, M. K. (1990). Dynamics and control of spacecraft with retargeting flexible antennas [J]. Journal of Guidance, Control, and Dynamics, 13(2), 241–248.

    Article  MathSciNet  Google Scholar 

  3. Loquen, T., de Plinval, H., & Cumer, C. et al. (2012). Attitude control of satellites with flexible appendages: a structured H control design. Proceedings of the AIAA Guidance, Navigation, and Control Conference, Minneapolis, USA, F.

    Google Scholar 

  4. de Souza, A. G., & de Souza, L. C. (2014). Satellite attitude control system design taking into account the fuel slosh and flexible dynamics [J]. Mathematical Problems in Engineering.

    Google Scholar 

  5. Gasbarri, P., Sabatini, M., & Pisculli, A. (2016). Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh [J]. Acta Astronautica, 127, 141–59.

    Google Scholar 

  6. Khoshnood, A. M., & Kavianipour, O. (2015). Vibration suppression of fuel sloshing using subband adaptive filtering (Research Note) [J]. International Journal of Engineering-Transactions A: Basics, 28(10), 1507–1514.

    Google Scholar 

  7. Souza A. G. D., & Souza L. C. G. D. (2015). Design of satellite attitude control system considering the interaction between fuel slosh and flexible dynamics during the system parameters estimation [J]. Applied Mechanics and Materials, 706, 14–24.

    Google Scholar 

  8. Gasbarri, P., Monti, R., de Angelis, C., et al. (2014). Effects of uncertainties and flexible dynamic contributions on the control of a spacecraft full-coupled model [J]. Acta Astronautica, 94(1), 515–526.

    Article  Google Scholar 

  9. Smith, O. J. (1957). Posicast control of damped oscillatory systems [J]. Proceedings of the IRE, 45(9), 1249–1255.

    Article  Google Scholar 

  10. Singer, N. (1990). Seering W. Preshaping Command Inputs to Reduce System Vibration [J]., 112(1), 76–82.

    Google Scholar 

  11. Singhose, W., Derezinski, S., & Singer, N. (1996). Extra-insensitive input shapers for controlling flexible spacecraft [J]. Journal of Guidance Control & Dynamics, 19(2), 385–391.

    Article  Google Scholar 

  12. Singhose, W. E., Seering, W. P., & Singer, N. C. (1996b). Input shaping for vibration reduction with specified insensitivity to modeling errors [J]. Japan-USA Sym on Flexible Automation, 1, 307–13.

    Google Scholar 

  13. Masoud, Z., & Alhazza, K. (2014). Frequency-modulation input shaping for multimode systems [J]. Journal of Vibration & Control, 14(103), 1–11.

    Google Scholar 

  14. Singh, T., & Heppler, G. R. (1993). Shaped input control of a system with multiple modes [J]. Journal of Dynamic Systems Measurement & Control, 115(3), 341–347.

    Article  Google Scholar 

  15. Magee, D. P., & Book, W. J. (1992). The application of input shaping to a system with varying parameters [J]. In Japan/USA Symposium on Flexible Automation, 1, 519–26.

    Google Scholar 

  16. Magee, D. P., & Book W. J. (1992). Experimental verification of modified command shaping using a flexible manipulator [J]. Proceedings of the 1992 First International Conference on Motion and Vibration Control, 55355–8.

    Google Scholar 

  17. Pao, L. Y., & Singhose, W. E. (1995). A comparison of constant and variable amplitude command shaping techniques for vibration reduction [J]. IEEE Conference on Control Applications, 875–881.

    Google Scholar 

  18. Cho, J.-K., & Park, Y.-S. (1995). Vibration reduction in flexible systems using a time-varying impulse sequence [J]. Robotica, 13(03), 305–13.

    Google Scholar 

  19. Lee, K.-S., & Park, Y.-S. (2001). Residual vibration reduction for a flexible structure using a modified input shaping technique [J]. Robotica, 20(05), 553–61.

    Google Scholar 

  20. Otsuki, M., Shibata, S., & Yoshida, K. (2007). Robust command shaping for positioning control of time-varying flexible structure considering structured uncertainty [J]. American Control Conference, IEEE, pp. 4987–92.

    Google Scholar 

  21. Otsuki, M., Mizukami, N., & Kubota, T. (2010). Simultaneous control for position and vibration of a planetary rover with flexible structures [J]. Advanced Robotics, 3, 387–419.

    Article  Google Scholar 

  22. Singh, T., & Vadali, S. R. (1994). Input-shaped control of three-dimensional maneuvers of flexible spacecraft [J]. Journal of Guidance Control & Dynamics, 16(6), 1061–1068.

    Article  Google Scholar 

  23. Hu, Q., Shi, P., & Gao, H. (2007). Adaptive variable structure and commanding shaped vibration control of flexible spacecraft [J]. Journal of Guidance Control & Dynamics, 30(3), 804–815.

    Article  Google Scholar 

  24. Orszulik, R., & Shan, J. (2011). Vibration control using input shaping and adaptive positive position feedback [J]. Journal of Guidance Control & Dynamics, 34(4), 1031–1044.

    Article  Google Scholar 

  25. Banerjee, A. K., Pedreiro, N., & Singhose, W. E. (2001). Vibration reduction for flexible spacecraft following momentum dumping with/without slewing [J]. Journal of Guidance, Control, and Dynamics, 24(3), 417–427.

    Google Scholar 

  26. Gurleyuk, S. S. (2011). Designing unity magnitude input shaping by using PWM technique [J]. Mechatronics, 21(1), 125–131.

    Article  Google Scholar 

  27. Mimmi, G., & Pennacchi, P. (2001). Pre-shaping motion input for a rotating flexible link [J]. International Journal of Solids & Structures, 38(10–13), 2009–2023.

    Article  Google Scholar 

  28. Li W. P., Luo, B., & Huang, H. (2016). Active vibration control of flexible joint manipulator using input shaping and adaptive parameter auto disturbance rejection controller [J]. Journal of Sound & Vibration, 363, 97–125.

    Google Scholar 

  29. Adams, C., Potter, J., & Singhose, W. (2015). Input-shaping and model-following control of a helicopter carrying a suspended load [J]. Journal of Guidance Control & Dynamics, 38(1), 94–105.

    Article  Google Scholar 

  30. Yang, T. S., Chen, K. S., Lee, C. C., et al. (2007). Suppression of motion-induced residual longitudinal vibration of an elastic rod by input shaping [J]. Journal of Engineering Mathematics, 57(4), 365–379.

    Article  Google Scholar 

  31. Chen, K. S., Ou, K. S., Chen, K. S., et al. (2010). Simulations and experimental investigations on residual vibration suppression of electromagnetically actuated structures using command shaping methods [J]. Journal of Vibration & Control, 16(16), 1713–1734.

    Article  Google Scholar 

  32. Singhose, W. E., Banerjee, A. K., & Seering, W. P. (1997). Slewing flexible spacecraft with deflection-limiting input shaping [J]. Journal of Guidance, Control, and Dynamics, 20(2), 291–298.

    Article  Google Scholar 

  33. Sung, Y.-G. (1999). Adaptive robust vibration control with input shaping as a flexible maneuver strategy [J]. KSME International Journal, 13(11), 807–17.

    Google Scholar 

  34. Parman, S. (2013). Controlling attitude maneuvers of flexible spacecraft based on nonlinear model using combined feedback-feedforward constant-amplitude inputs [J]. In 2013 10th IEEE International Conference on Control and Automation (ICCA), 1584–91.

    Google Scholar 

  35. Setyamartana, P., & Hideo, K. (1999). Rest-to-rest attitude naneuvers and residual vibration reduction of a finite element model of flexible satellite by using input shaper [J]. Shock and Vibration, 6(1), 11–27.

    Article  Google Scholar 

  36. Zhang, Y., & Zhang, J. (2013). Combined control of fast attitude maneuver and stabilization for large complex spacecraft [J]. Acta Mechanica Sinica, 29(6), 875–882.

    Article  MathSciNet  Google Scholar 

  37. Gasbarri, P., Monti, R., & Sabatini, M. (2014). Very large space structures: Non-linear control and robustness to structural uncertainties [J]. Acta Astronautica, 93, 252–65.

    Google Scholar 

  38. Miao, S., Cong, B., & Liu, X. (2013). Adaptive sliding mode control of flexible spacecraft on input shaping [J]. Acta Aeronautica et Astronautica Sinica, 34(8), 1906–1914.

    Google Scholar 

  39. Zhu, L., Ma, G., Hou, Y., et al. (2009). Adaptive sliding mode control for attitude maneuvering of flexible spacecraft [J]. Journal of Beijing University of Technology, 35(1), 13–18.

    MathSciNet  Google Scholar 

  40. Na, S., Tang, G.-A., & Chen L.-F. (2014). Vibration reduction of flexible solar array during orbital maneuver [J]. Aircraft Engineering and Aerospace Technology: An International Journal, 86(2), 155–64.

    Google Scholar 

  41. Kim, J. J., & Agrawal, B. N. (2008). RESt-to-rest slew maneuver of three-axis rotational flexible spacecraft. Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, F, 2008 [C].

    Google Scholar 

  42. Vaughan, J., Yano, A., & Singhose, W. (2008). Comparison of robust input shapers [J]. Journal of Sound and Vibration, 315, 797–815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Li, DX. (2022). Optimal Variable Amplitudes Input Shaping Control for Slew Maneuver of Flexible Spacecraft. In: Rigid-Flexible Coupling Dynamics and Control of Flexible Spacecraft with Time-Varying Parameters. Springer, Singapore. https://doi.org/10.1007/978-981-16-5097-0_5

Download citation

Publish with us

Policies and ethics