Skip to main content

Rice Interactions with Plant Growth Promoting Rhizobacteria

  • Chapter
  • First Online:
Modern Techniques of Rice Crop Production

Abstract

Rice is an important cereal crop that serves as a staple food for half of the world population. The rhizosphere of the rice contributes to its nutrition where plant growth promoting rhizobacteria (PGPR) play a pivotal role. The PGPR are bacteria living in close vicinity of plant roots (3–5 mm) to positively influence plant growth via nitrogen fixation, nutrient solubilization, phytohormones, siderophores, exopolysaccharides, and enzymes production. The PGPR are inoculated to rice as single strain or in consortia with multiple benefits to the crop. Moreover, PGPR also contribute in alleviating the adverse impacts of salinity, heat, drought, heavy metals, and diseases on rice crop. Rice-PGPR interactions vary in time and space as per plant growth stage, growth conditions, management practices, and prevailing climatic and edaphic conditions. Rhizosphere of rice attracts or repels several soil microbes that modulate bacterial community composition. This chapter documents the interactions of rice with PGPR in the rhizosphere, PGPR-mediated growth improvements, underlying mechanisms, and their possible utilization in alleviating suboptimal levels of growth factors. Current progress is documented based on the existing agronomic and experimental evidences; while missing links on various aspects of PGPR interaction with rice are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdaullah Y, Yang M, Zhang M, Masum MM, Ogunyemi SO, Hossain A, An Q, Yan C, Li B (2019) Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Lett Appl Microbial 68:423–429

    Article  CAS  Google Scholar 

  • Aeron A, Pandey P, Maheshwari DK (2010) Differential response of sesame under influence of indigenous and non-indigenous rhizosphere competent rhizosphere fluorescent pseudomonads. Curr Sci 99(2):166–168

    Google Scholar 

  • Ahmad S, Hasanuzzaman M (2012) Integrated effect of plant density, N rates and irrigation regimes on the biomass production, N content, PAR use efficiencies and water productivity of rice under irrigated semiarid environment. Not Bot Horti Agrobot Cluj-Napoca 40(1):201–211

    Article  CAS  Google Scholar 

  • Ahmad S, Zia-ul-Haq M, Ali H, Shad SA, Ammad A, Maqsood M, Khan MB, Mehmood S, Hussain A (2008) Water and radiation use efficiencies of transplanted rice (Oryza sativa L.) at different plant densities and irrigation regimes under semi-arid environment. Pak J Bot 40(1):199–209

    Google Scholar 

  • Ahmad S, Ahmad A, Zia-ul-Haq M, Ali H, Khaliq T, Anjum MA, Khan MA, Hussain A, Hoogenboom G (2009) Resources use efficiency of field grown transplanted rice (Oryza sativa L.) under irrigated semiarid environment. J Food Agric Environ 7(2):487–492

    Google Scholar 

  • Ahmad S, Ahmad A, Soler CMT, Ali H, Zia-Ul-Haq M, Anothai J, Hussain A, Hoogenboom G, Hasanuzzaman M (2012) Application of the CSM-CERES-Rice model for evaluation of plant density and nitrogen management of fine transplanted rice for an irrigated semiarid environment. Precis Agric 13(2):200–218

    Article  Google Scholar 

  • Ahmad S, Ahmad A, Ali H, Hussain A, Garcia y Garcia A, Khan MA, Zia-Ul-Haq M, Hasanuzzaman M, Hoogenboom G (2013) Application of the CSM-CERES-Rice model for evaluation of plant density and irrigation management of transplanted rice for an irrigated semiarid environment. Irrig Sci 31(3):491–506

    Article  Google Scholar 

  • Ahmad A, Ashfaq M, Rasul G, Wajid SA, Khaliq T, Rasul F, Saeed U, Rahman MH, Hussain J, Baig IA, Naqvi AA, Bokhari SAA, Ahmad S, Naseem W, Hoogenboom G, Valdivia RO (2015) Impact of climate change on the rice–wheat cropping system of Pakistan. In: Hillel D, Rosenzweig C (eds) Handbook of climate change and agro-ecosystems: the agricultural modeling intercomparison and improvement project (AgMIP) integrated crop and economic assessments. Imperial College Press and The American Society of Agronomy, London, pp 219–258

    Chapter  Google Scholar 

  • Ahmad S, Abbas G, Ahmed M, Fatima Z, Anjum MA, Rasul G, Khan MA, Hoogenboom G (2019) Climate warming and management impact on the change of rice-wheat phenology in Punjab, Pakistan. Field Crop Res 230:46–61

    Article  Google Scholar 

  • Ahmed M, Ahmad S (2019) Carbon dioxide enrichment and crop productivity. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer, Singapore, pp 31–46

    Chapter  Google Scholar 

  • Ahmed M, Ahmad S (2020) Systems modeling. In: Ahmed M (ed) Systems modeling. Springer, Singapore, pp 1–44

    Chapter  Google Scholar 

  • Ahmed M, Fayyaz-ul-Hassan, Ahmad S (2017) Climate variability impact on rice production: adaptation and mitigation strategies. In: Ahmed M, Stockle C (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer, Switzerland, pp 91–111

    Chapter  Google Scholar 

  • Ahmed M, Ahmad S, Raza MA, Kumar U, Ansar M, Shah GA, Parsons D, Hoogenboom G, Palosuo T, Seidel S (2020a) Models calibration and evaluation. In: Ahmed M (ed) Systems modeling. Springer, Singapore, pp 151–178

    Chapter  Google Scholar 

  • Ahmed M, Ahmad S, Waldrip HM, Ramin M, Raza MA (2020b) Whole farm modeling: a systems approach to understanding and managing livestock for greenhouse gas mitigation, economic viability and environmental quality. In: Waldrip HM, Pagliari PH, He Z (eds) Animal Manure. ASA Special Publication 67. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp 345–371

    Google Scholar 

  • Akram R, Turan V, Hammad HM, Ahmad S, Hussain S, Hasnain A, Maqbool MM, Rehmani MIA, Rasool A, Masood N, Mahmood F, Mubeen M, Sultana SR, Fahad S, Amanet K, Saleem M, Abbas Y, Akhtar HM, Hussain S, Waseem F, Murtaza R, Amin A, Zahoor SA, Sami ul Din M, Nasim W (2018) Fate of organic and inorganic pollutants in paddy soils. In: Hashmi MZ, Varma A (eds) Environmental pollution of paddy soils. Springer, Switzerland, pp 197–214

    Google Scholar 

  • Akram R, Fahad S, Masood N, Rasool A, Ijaz M, Ihsan MZ, Maqbool MM, Ahmad S, Hussain S, Ahmed M, Kaleem S, Sultana SR, Mubeen M, Saud S, Kamran M, Nasim W (2019) Plant growth and morphological changes in rice under abiotic stress. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing, Swaston, pp 69–85

    Chapter  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348:1261–1271

    Article  CAS  Google Scholar 

  • Arriel-Elias MT, de Carvalho Barros Côrtes MV, de Sousa TP, Chaibub AA, de Filippi MCC (2019) Induction of resistance in rice plants using bioproducts produced from Burkholderia pyrrocinia BRM 32113. Environ Sci Pollut Res Int 26:19705–19718

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Frankenberger WT (1998) Plant growth regulating substances in the rhizosphere: microbial production and function. Adv Agron 62:45–151

    Article  CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol (Stuttg) 3:139–148

    Article  CAS  Google Scholar 

  • Awasthi S, Chauhan R, Dwivedi S, Srivastava S, Srivastava S, Tripathi RD (2018) A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice: a promising and feasible approach. Environ Exp Bot 150:115–126

    Article  CAS  Google Scholar 

  • Azcon R, Medina A, Aroca R, Ruiz-Lozano JM (2013) Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. In: de Brujin FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 991–1002

    Chapter  Google Scholar 

  • Balandreau J (2002) The spermosphere model to select for plant growth promoting rhizobacteria. In: Kennedy IR, Choudhury ATMA (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, Australia, pp 55–63

    Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazatrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

    Article  CAS  Google Scholar 

  • Bhattacharjee RB, Sin A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee RB, Jourand P, Chaintreuil C, Dreyfus B, Singh A, Mukhopadhyay SN (2012) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarumbv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol Fertil Soils 48:173–182

    Article  CAS  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11

    Article  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Bradacova K, Floria AS, Bar-Tal A, Minz D, Yerminyahu U, Shawahna R, Kraut-Cohen J, Zolti A, Erel R, Dietel K, Weinmann M, Zinnerman B, Berger N, Ludewig U, Neumann G, Poster G (2019) Microbial consortia versus single-strain inoculants: an advantage in PGPM-assisted tomato production? Agronomy 9:1–25

    Article  CAS  Google Scholar 

  • Breidenbach B, Pump J, Dumont MG (2016) Microbial community structure in the rhizosphere of rice plants. Front Microbiol 6:1537

    Article  PubMed  PubMed Central  Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38(1):124–130

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  PubMed  Google Scholar 

  • Cheikh N, Jones RJ (1994) Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol 106:45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 129:85–92

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292

    Article  CAS  PubMed  Google Scholar 

  • Dey R, Pal KK, Tilak KVBR (2014) Plant growth-promoting rhizobacteria in crop protection and challenges. In: Goyal A, Manoharachary C (eds) Future challenges in crop protection against fungal pathogens. Springer, New York, pp 31–58

    Google Scholar 

  • Dhondge HV, Pable AA, Barvkar VT, Dastager SG, Nadaf AB (2021) Rhizobacterial consortium mediated aroma and yield enhancement in basmati and non-basmati rice (Oryza sativa L.). J Biotechnol 328:47–58

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244

    Article  PubMed  Google Scholar 

  • Fahad S, Noor M, Adnan M, Khan MA, Rahman I, Alam M, Khan IA, Ullah H, Mian IA, Hassan S, Saud S, Bakhat HF, Hammad HM, Ahmad S, Nasim W (2019) Abiotic stress and rice grain quality. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing, Swaston, pp 571–583

    Chapter  Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW) managing systems at risk. Food and Agriculture Organization of the United Nations/Earthscan, Rome, London

    Google Scholar 

  • FAO (2014) Emissions - Agriculture. Emissions of Methane and Nitrous Oxide Produced From Agricultural Activities. Average 1990–2013

    Google Scholar 

  • FAO (2016) FAO FAOSTAT. http://www.fao.org/faostat/en/#home. Accessed 21 Feb 2018

  • FAO (2020) Food Outlook - Biannual Report on Global Food Markets: June 2020. Food Outlook, 1. Rome

    Google Scholar 

  • Fatima Z, Ahmad M, Hussain M, Abbas G, Ul-Allah S, Ahmad S, Ahmed N, Ali MA, Sarwar G, Ehsan ul Haque, Iqbal P, Hussain S (2020) The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci Rep 10:18013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouda A, Eid AM, Elsaied A, El-Belely EF, Barghoth MG, Azab E, Gobouri AA, Hassan SED (2021) Plant growth-promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC inherent to arid regions. Plants 10:76

    Article  CAS  PubMed Central  Google Scholar 

  • Frankenberger WT, Arshad M (1995) Phytohormones in soil: microbial production and function. Dekker, New York, 503p

    Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting Bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Australas Sci 2012:963401

    Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gomez-Ramirez LF, Uribe-Velez D (2021) Phosphorus solubilizing and mineralizing Bacillus spp. contribute to rice growth promotion using soil amended with rice straw. Curr Microbiol 78:932–948

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Upadhyaya HD, Vadlamudi S, Humayun P, Vidya MS, Alekhya G, Singh A, Vijayabharathi R, Bhimineni RK, Seema M, Rathore A, Rupela O (2012) Plant growth promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. Springerplus 1:71p

    Article  CAS  Google Scholar 

  • Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr Microbiol 57:312–317

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Saxena RK, Chaturvedi P, Virdi VS (1995) Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. J Appl Bacteriol 78:378–383

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hafeez-ur-Rehman A, Nawaz A, Awan MI, Ijaz M, Hussain M, Ahmad S, Farooq M (2019) Direct seeding in rice: problems and prospects. In: Hasanuzzaman M (ed) Agronomic crops: production technologies, vol 1. Springer, Singapore, pp 199–222

    Chapter  Google Scholar 

  • Hamdia MAES, Shaddad M, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  CAS  PubMed  Google Scholar 

  • Han H, Lee S (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1:216–221

    Google Scholar 

  • Han X, Sun X, Wang C, Wu M, Dong D, Zhong T, Thies JE, Wu W (2016) Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Sci Rep 6:24731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harold F, Reetz J (2016) Fertilizers and Their Efficient Use. International Ferlizers Industry Association. www.fertilizers.org

  • Hartmann A, Rothballer M, Schmid M, Hiltner L (2008) A pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hashem MA (2001) Problems and prospects of cyanobacterial biofertilizer for rice cultivation. Aust J Plant Physiol 28:881–888

    Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hussain MB, Mehboob I, Zahir ZA, Naveed M, Asghar HN (2009) Potential of Rhizobium spp. for improving growth and yield of rice. Soil Environ 28(1):49–55

    Google Scholar 

  • Hussain Q, Liu Y, Zhang A, Pan G, Li L, Zhang X, Song X, Cui L, Jin Z (2011) Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux. FEMS Microbiol Ecol 78:116–128

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Ahmad S, Hussain S, Lal R, Ul-Allah S, Nawaz A (2018) Rice in saline soils: physiology, biochemistry, genetics and management. Adv Agron 148:231–287

    Article  Google Scholar 

  • IFPRI (2012) Global food policy report. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Jan M, Shah G, Masood S, Shinwari KI, Hameed R, Rha ES, Jamil M (2019) Bacillus cereus enhanced phytoremediation ability of rice seedlings under cadmium toxicity. Biomed Res Int 1:1–12

    Google Scholar 

  • Jhala YK, Vyas RV, Shelat HN, Patel HK, Patel HK, Patel KT (2014) Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World J Microbiol Biotechnol 30:1845–1860

    Article  CAS  PubMed  Google Scholar 

  • Jiang YJ, Liang YT, Li CM, Wang F, Sui YY, Suvannang N, Zhou JZ, Sun B (2016) Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol Biochem 95:250–261

    Article  CAS  Google Scholar 

  • Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog 9:e1003332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi B, Chaudhary A, Singh H, Kumar PA (2020) Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant Soil 457:225–240

    Article  CAS  Google Scholar 

  • Karmakar J, Goswami S, Pramanik K, Maiti TK, Kar RK, Dey N (2021) Growth promoting properties of Mycobacterium and Bacillus on rice plants under induced drought. Plant Sci Today 8(1):49–57. https://doi.org/10.14719/pst.2021.8.1.965

    Article  CAS  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant growth promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Kaur G, Kumar S, Nayyar H, Upadhyaya HD (2008) Cold stress injury during the pod-filling phase in chickpea (Cicer arietinum L.): effects on quantitative and qualitative components of seeds. J Agron Crop Sci 194:457–464

    Google Scholar 

  • Khan A, Zhao XQ, Javed MT, Khan KS, Bano A, Shen RF, Masood S (2016) Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ Exp Bot 124:120–129

    Google Scholar 

  • Khan MHU, Khattak JZK, Jamil M, Malook I, Khan SU, Jan M, Din I, Saud S, Kamran M, Alharby H, Fahad S (2017) Bacillus safensis with plant-derived smoke stimulates rice growth under saline conditions. Environ Sci Pollut Res 24:23850–23863

    Google Scholar 

  • Khan MA, Ahmad S, Raza A (2019a) Integrated weed management for agronomic crops. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer, Singapore, pp 257–281

    Chapter  Google Scholar 

  • Khan SM, Ali S, Nawaz A, Bukhari SAH, Ejaz S, Ahmad S (2019b) Integrated pest and disease management for better agronomic crop production. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer, Singapore, pp 385–428

    Chapter  Google Scholar 

  • Kim YC, Glick B, Bashan Y, Ryu CM (2013) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 383–413

    Google Scholar 

  • Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024

    Article  Google Scholar 

  • Kobayashi DY, Reedy RM, Bick J, Oudemans PV (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kompas T, Pham VH, Che TN (2018) The effects of climate change on GDP by country and the global economic gains from complying with the Paris climate accord. Earth’s Future 6:1153–1173

    Article  Google Scholar 

  • Kumar M (2017) Bacterial community interaction with plants: with special reference to paddy field. J Agric Sci Bot 1:34–35

    Article  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against pathogens. Microbiol Res 167(8):493–499

    Google Scholar 

  • Kumar A, Singh S, Mukherjee A, Rastogi RP, Verma JP (2021) Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiol Res 242:126616

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Reddy PM (1995) Extension of nitrogen fixation to rice - necessity and possibilities. GeoJournal 35:363–372

    Article  Google Scholar 

  • Lafitte HR, Yongsheng G, Yan S, Lil ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175

    Article  CAS  PubMed  Google Scholar 

  • Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310:1628–1632

    Article  CAS  PubMed  Google Scholar 

  • Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants 8(4):94. https://doi.org/10.3390/antiox8040094

    Article  CAS  PubMed Central  Google Scholar 

  • Leclere V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Rui J, Mao Y, Yannarell A, Mackie R (2014) Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem 68:392–401

    Article  CAS  Google Scholar 

  • Liu ZP, Wang ZG, Xu WH, Chen WJ, Lv ZH, Long WC, Shi YR (2018) Screen, identification and analysis on the growth-promoting ability for the rice growth-promoting rhizobacteria. J Agric Resour Environ 35:119–125

    Google Scholar 

  • Liu H, Wang Z, Xu W, Zeng J, Li L, Li S, Gao Z (2020) Bacillus pumilus LZP02 promotes rice root growth by improving carbohydrate metabolism and phenylpropanoid biosynthesis. Mol Plant Microbe Interact 33:1222–1231

    Google Scholar 

  • Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618

    Article  PubMed  Google Scholar 

  • Lopez-Cervantes J, Thorpe DT (2013) Microbial composition comprising liquid fertilizer and processes for agricultural use. WO Patent, WO2013148278A1

    Google Scholar 

  • Lucas JA, Ramos-Solano B, Montes F, Ojeda J, Megias M, Gutierrez Mañero FJ (2009) Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crop Res 114:404–410

    Article  Google Scholar 

  • Lucas JA, García-Cristobal J, Bonilla A, Ramos B, Gutierrez-Ma~nero J (2014) Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiol Biochem 82:44–53

    Google Scholar 

  • Luo S, Wan Y, Xiao X, Guo H, Chen L, Xi Q, Zeng G, Liu C, Chen J (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari DK, Aeron A, Dubey RC, Agrwal M, Dheeman S, Shukla S (2014) Multifaceted beneficial associations with Pseudomonas and rhizobacteria on growth promotion of Mucuna pruriens L. J Pure Appl Microbiol 8(6):4657–4667

    Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, USA, pp 1–19

    Google Scholar 

  • Mauseth JD (1991) Botany: an introduction to plant biology. Saunders, Philadelphia, pp 348–415

    Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJ, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  CAS  PubMed  Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Leeuwenhoek 101:777–786

    Article  CAS  PubMed  Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 472:110–117

    Article  Google Scholar 

  • Mian MH (2002) Azobiofer: a technology of production and use of Azolla as biofertiliser for irrigated rice and fish cultivation. In: Kennedy IR, Choudhury ATMA (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, Australia, pp 45–54

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Minamisawa K, Imaizumi-Anraku H, Bao Z, Shinoda R, Okubo T, Ikeda S (2016) Are symbiotic methanotrophs key microbes for N acquisition in paddy rice root? Microbes Environ 31:4–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nascimento FX, Rossi MJ, Soares CR, McConkey BJ, Glick BR (2014) New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 6:e99168

    Article  CAS  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Naz S, Fatima Z, Iqbal P, Khan A, Zakir I, Noreen S, Younis H, Abbas G, Ahmad S (2019) Agronomic crops: types and uses. In: Hasanuzzaman M (ed) Agronomic crops: production technologies, vol 1. Springer, Singapore, pp 1–18

    Google Scholar 

  • Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15:2395–2417

    Article  CAS  PubMed  Google Scholar 

  • Nguyen N, Ferrero A (2006) Meeting the challenges of global rice production. Paddy Water Environ 4:1–9

    Article  Google Scholar 

  • Nuti M, Giovannetti G (2015) Borderline products between bio-fertilizers/bio-effectors and Plant protectants: the role of microbial consortia. J Agric Sci Technol 5:305–315

    Google Scholar 

  • Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:182–186

    Article  Google Scholar 

  • Orlandelli RC, Vasconcelos AFD, Azevedo JL, Silva MLC, Pamphile JA (2016) Screening of endophytic sources of exopolysaccharides: preliminary characterization of crude exopolysaccharide produced by submerged culture of Diaporthe sp. JF766998 under different cultivation time. Biochim Open 2:33–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth-promotion. Appl Microbiol Biotechnol 97:9621–9636

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92(8):1137–1142

    CAS  Google Scholar 

  • Peerzada AM, Bukhari SAH, Dawood M, Nawaz A, Ahmad S, Adkins S (2019) Weed management for healthy crop production. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer, Singapore, pp 225–256

    Chapter  Google Scholar 

  • Pittol M, Durso L, Valiati VH, Fiuza LM (2016) Agronomic and environmental aspects of diazotrophic bacteria in rice fields. Ann Microbiol 66:511–527

    Article  CAS  Google Scholar 

  • Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC (2021) Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. Chemosphere 274:129819

    Article  CAS  PubMed  Google Scholar 

  • Pratiwi E, Akhdiya A, Purwani J, Husnain, Syakir M (2021) Impact of methane-utilizing bacteria on rice yield, inorganic fertilizers efficiency and methane emissions. 1st International Conference on Sustainable Tropical Land Management. IOP Conf Ser: Earth Environ Sci 648:012137. https://doi.org/10.1088/1755-1315/648/1/012137

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Razaq M, Shah FM, Ahmad S, Afzal M (2019) Pest management for agronomic crops. In: Hasanuzzaman M (ed) Agronomic Crops, vol 2. Springer, Singapore, pp 365–384

    Chapter  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823p

    Article  CAS  Google Scholar 

  • Rêgo MCF, Cardoso AF, Ferreira TC, de Filippi MCC, Batista TFV, Viana RG, da Silva GB (2018) The role of rhizobacteria in rice plants: growth and mitigation of toxicity. J Integr Agric 17:2636–2647

    Article  Google Scholar 

  • Richardson AE, Barea JM, McNeil AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Rehman MZ, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms and management: a critical review. Environ Sci Pollut Res 23:17859–17879

    Article  CAS  Google Scholar 

  • Saechow S, Thammasittirong A, Kittakoop P, Prachya S, Thammasittirong SNR (2018) Antagonistic activity against dirty panicle rice fungal pathogens and plant growth-promoting activity of Bacillus amyloliquefaciens BAS23. J Microbiol Biotechnol 28(9):1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J IndustMicrobiol Biotechnol 34:635–648

    CAS  Google Scholar 

  • Sarwar MH, Sarwar MF, Sarwar M, Qadri NA, Moghal S (2013a) The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J Cereals Oilseeds 4:32–35

    Article  Google Scholar 

  • Sarwar N, Ali H, Ahmad S, EhsanUllah, Ahmad S, Mubeen K, Hill JE (2013b) Water wise rice cultivation on calcareous soil with the addition of essential micronutrients. J Anim Plant Sci 23(1):244–250

    Google Scholar 

  • Sarwar N, Ali H, Maqsood M, EhsanUllah, Shahzad AN, Shahzad M, Mubeen K, Shahid MA, Ahmad S (2013c) Phenological response of rice plants to different micronutrients application under water saving paddy fields on calcareous soil. Turk J Field Crops 18(1):52–57

    Google Scholar 

  • Sekar J, Raj R, Prabavathy VR (2016) Microbial consortial products for sustainable agriculture: commercialization and regulatory issues in India. In: Singh HB, Sarma BK, Keswani (eds) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, pp 107–133

    Chapter  Google Scholar 

  • Sen S, Chandrasekhar CN (2015) Effect of PGPR on enzymatic activities of rice (Oryza sativa L.) under salt stress. Int J Adv Agric Res 3:37–41

    Google Scholar 

  • Shah G, Jan M, Afreen M, Anees M, Rehman S, Daud MK, Malook I, Jamil M (2017) Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice. J Geochem Explor 174:59–65

    Article  CAS  Google Scholar 

  • Shahzad AN, Ahmad S (2019) Tools and techniques for nitrogen management in cereals. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer, Singapore, pp 111–126

    Chapter  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59(2):89–94

    Article  CAS  Google Scholar 

  • Shen FT, Yen JH, Liao CS, Chen WC, Chao YT (2019) Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth promoting characteristics. Sustain For 11:1133p

    Article  CAS  Google Scholar 

  • Singh DP, Singh V, Gupta VK, Shukla R, Prabha R, Sarma BK, Patel JS (2020) Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci Rep 10:4818p

    Article  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Averyt K, Marquis M (2007) Climate change: the physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, London

    Google Scholar 

  • Srivastava S, Bist V, Srivastava S, Singh PC, Trivedi PK, Asif MH, Chauhan PS, Nautiyal CS (2016) Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Front Plant Sci 7:587

    PubMed  PubMed Central  Google Scholar 

  • Sulaiman C, Moung-Ngam P, Arikit S, Vanavichit A, Malumpong C (2018) Effects of heat stress at vegetative and reproductive stages on spikelet fertility. Rice Sci 25:218–226

    Article  Google Scholar 

  • Sun T, Liu YYN, Wu S, Zhang JZ, Qu B, Xu JG (2020) Effects of background fertilization followed by co-application of two kinds of bacteria on soil nutrient content and rice yield in Northeast China. Int J Agric Biol Eng 13:154–162

    Google Scholar 

  • Takeda K, Tonouchi A, Takada M, Suko T, Suzuki S, Kimura Y, Matsuyama N, Fujita T (2008) Characterization of cultivable methanotrophs from paddy soils and rice roots. Soil Sci Plant Nutr 54(6):876–885

    Article  CAS  Google Scholar 

  • Tariq M, Ahmed M, Iqbal P, Fatima Z, Ahmad S (2020) Crop phenotyping. In: Ahmed M (ed) Systems modeling. Springer, Singapore, pp 45–60

    Chapter  Google Scholar 

  • Thomas J, Kim HR, Rahmatallah Y, Wiggins G, Yang Q, Singh R, Glazko G, Mukherjee A (2019) RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant growth promoting bacteria, Azospirillum brasilense. PLoS One 14:e0217309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Nevo E (2011) Plant root associated biofilms. In: Maheshwari DK (ed) Bacteria in agrobiology. Plant nutrient management. Springer, Berlin, pp 285–300

    Chapter  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets U (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:1–13

    Article  CAS  Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanegas J, Uribe-Vélez D (2014) Selection of mixed inoculants exhibiting growth-promoting activity in rice plants from undefined consortia obtained by continuous enrichment. Plant Soil 375:215–227

    Article  CAS  Google Scholar 

  • Vinocur BA, Altman (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Vorholt JA, Vogel C, Carlström CI, Mueller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22:142–155

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang H, Liu Z, Xu W, Wang Z (2019) Determination of growth-promoting ability of several strains to rice. Jiangsu Agr Sci 47:94–99

    CAS  Google Scholar 

  • Wani SP, Gopalakrishnan S (2019) Plant growth-promoting microbes for sustainable agriculture. In: Sayyed R, Reddy M, Antonius S (eds) Plant growth promoting rhizobacteria (PGPR): prospects for sustainable agriculture. Springer, Singapore, pp 19–45

    Chapter  Google Scholar 

  • Wasaya A, Yasir TA, Ijaz M, Ahmad S (2019) Tillage effects on agronomic crop production. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer, Singapore, pp 73–99

    Chapter  Google Scholar 

  • Watanabe A, Takeda T, Kimura M (1999) Evaluation of origins of CH4 carbon emitted from rice paddies. J Geophys Res 104:23623–23629

    Article  CAS  Google Scholar 

  • Win KT, Oo AZ, Ohkama-Ohtsu N, Yokoyama T (2018) Bacillus Pumilus strain TUAT-1 and nitrogen application in nursery phase promote growth of rice plants under field conditions. Agronomy 8:216p

    Google Scholar 

  • Wong WS, Tan SN, Ge L, Chen X, Yong JWH (2015) The importance of phytohormones and microbes in biofertilizers. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agro-ecosystem. Springer, New York, pp 105–158

    Chapter  Google Scholar 

  • Woo SL, Pepe O (2018) Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front Plant Sci 9:1801

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan C, Zhang L, Hu H, Wang J, Shen J, He J (2018) The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. J Soils Sediments 18:1795–1805

    Article  CAS  Google Scholar 

  • Zahoor SA, Ahmad S, Ahmad A, Wajid A, Khaliq T, Mubeen M, Hussain S, Sami Ul Din M, Amin A, Awais M, Nasim W (2019) Improving water use efficiency in agronomic crop production. In: Hasanuzzaman M (ed) Agronomic Crops, vol 2. Springer, Singapore, pp 13–29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Baqir Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, M.B. et al. (2022). Rice Interactions with Plant Growth Promoting Rhizobacteria. In: Sarwar, N., Atique-ur-Rehman, Ahmad, S., Hasanuzzaman, M. (eds) Modern Techniques of Rice Crop Production . Springer, Singapore. https://doi.org/10.1007/978-981-16-4955-4_14

Download citation

Publish with us

Policies and ethics