Skip to main content

Multi-level Mathematical Models for Cell Migration in Confined Environments

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 370))

Abstract

The aim of this contribution is to put together in a systematic way several approaches operating at different scales that were recently developed to describe the phenomenon of physical limit of migration, that occurs when the environment surrounding cells results restrictive, and to apply it to tumour growth and invasion. In particular, we will present: (i) a mechanical model of the behaviour of a cell within a microchannel that gives a blockage criterium for its penetration; (ii) a cellular Potts model to describe the dependence of the speed of a malignant cell from the mechanical characteristics both of its compartments (i.e., nucleus and cytosol) and of its environment; (iii) a multiphase model embodying such effects; (iv) the proper interface conditions to implement to deal with tumour invasion across matrix membranes and cell linings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed, N., Thompson, E.W., Quinn, M.A.: Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J. Cell. Physiol. 213, 581–588 (2007)

    Article  Google Scholar 

  2. Ambrosi, D., Duperray, A., Peschetola, V., Verdier, C.: Traction patterns of tumor cells. J. Math. Biol. 58, 163–181 (2009)

    Article  MathSciNet  Google Scholar 

  3. Arduino, A., Preziosi, L.: A multiphase model of tumour segregation in situ by a heterogeneous extra-cellular matrix. Int. J. Nonlinear Mech. 75, 22–30 (2015)

    Article  Google Scholar 

  4. Byrne, H., Preziosi, L.: Modeling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2004)

    Article  Google Scholar 

  5. Chaplain, M.A.J., Giverso, C., Lorenzi, T., Preziosi, L.: Interface conditions for a tumour growth model with Basal Membrane. SIAM J. Appl. Math. 79, 2011–2031 (2019)

    Article  MathSciNet  Google Scholar 

  6. Dembo, M., Wang, Y.L.: Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999)

    Article  Google Scholar 

  7. Evans, E.A., Waugh, R., Melnik, L.: Elastic area compressibility modulus of red cell membrane. Biophys. J. 16, 585–595 (1976)

    Article  Google Scholar 

  8. Friedl, P., Wolf, K., Lammerding, J.: Nuclear mechanics during cell migration. Curr. Opin. Cell. Biol. 23, 55–64 (2011)

    Article  Google Scholar 

  9. Gerlitz, G., Bustin, M.: The role of chromatin structure in cell migration. Trends Cell. Biol. 21, 6–11 (2011)

    Article  Google Scholar 

  10. Giverso, C., Arduino, A., Preziosi, L.: How nucleus mechanics and ECM topology influence the invasion of single cells and multicellular aggregates. Bull. Math. Biol. 80, 1017–1045 (2018)

    Article  MathSciNet  Google Scholar 

  11. Giverso, C., Grillo, A., Preziosi, L.: Influence of nucleus deformability on cell entry into cylindrical structures. Biomech. Model. Mechanobiol. 13(3), 481–502 (2013)

    Article  Google Scholar 

  12. Giverso, C., Scianna, M., Preziosi, L., Lo Buono, N., Funaro, A.: Individual cell-based model for in-vitro mesothelial invasion of ovarian cancer. Math. Model. Nat. Phen. 5, 203–223 (2010)

    Article  MathSciNet  Google Scholar 

  13. Huber, A.R., Weiss, S.J.: Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J. Clin. Invest. 83, 1122–1136 (1989)

    Article  Google Scholar 

  14. Kalluri, R.: Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3, 422–433 (2003)

    Article  Google Scholar 

  15. Kelley, L.C., Lohmer, L.L., Hagedorn, E.J., Sherwood, D.R.: Traversing the basement membrane in vivo: A diversity of strategies. J. Cell Biol. 204, 291–302 (2014)

    Article  Google Scholar 

  16. Legant, W.R., Miller, J.S., Blakely, B.L., Cohen, D.M., Genin, G.M., Chen, C.S.: Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7, 969–971 (2010)

    Article  Google Scholar 

  17. Lengyel, E.: Ovarian cancer development and metastasis. Am. J. Pathol. 177, 1053–1064 (2010)

    Article  Google Scholar 

  18. Mascheroni, P., Boso, D., Preziosi, L., Schrefler, B.A.: Evaluating the influence of mechanical stress on anticancer treatments through a multiphase porous media model. J. Theor. Biol. 421, 179–188 (2017)

    Article  MathSciNet  Google Scholar 

  19. Mascheroni, P., et al.: Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media. Biomech. Model. Mechanobiol. 15, 1215–1228 (2016)

    Article  Google Scholar 

  20. Peschetola, V.: Time-dependent traction force microscopy for cancer cells as a measure of invasiveness. Cytoskeleton 70, 201–214 (2013)

    Article  Google Scholar 

  21. Preziosi, L., Vitale, G.: Mechanical aspects of tumour growth: Multiphase modelling, adhesion, and evolving natural configurations. In: Ben Amar, M., Goriely, A., Müller, M.M., Cugliandolo, L.F. (eds.) New Trends in the Physics and Mechanics of Biological Systems, pp. 177–228. Oxford University Press (2011)

    Google Scholar 

  22. Rowe, R.G., Weiss, S.: Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008)

    Article  Google Scholar 

  23. Scianna, M., Preziosi, L., Wolf, K.: A cellular Potts model simulating cell migration on and in matrix environments. Math. Biosci. Eng. 10, 235–261 (2013)

    Article  MathSciNet  Google Scholar 

  24. Scianna, M., Preziosi, L.: Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels. J. Theor. Biol. 317, 394–406 (2013)

    Article  Google Scholar 

  25. Scianna, M., Preziosi, L.: A cellular Potts model for the MMP-dependent and -independent cancer cell migration in matrix microtracks of different dimensions. Comput. Mech. 53(3), 485–497 (2013)

    Article  Google Scholar 

  26. Scianna, M., Prezios, L.: A Cellular Potts Model analyzing cancer cell migration across constraining pillar arrays. Axioms 10, 32 (2021)

    Google Scholar 

  27. te Boekhorst, V., Preziosi, L., Friedl, P.: Plastiticy of cell migration in vivo and in silico. Ann. Rev. Cell Dev. Biol. 32, 491–526 (2016)

    Article  Google Scholar 

  28. Wolf, K., et al.: Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013)

    Article  Google Scholar 

  29. Wolf, K.: Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell. Biol. 9, 893–904 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Preziosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Preziosi, L., Scianna, M. (2021). Multi-level Mathematical Models for Cell Migration in Confined Environments. In: Suzuki, T., Poignard, C., Chaplain, M., Quaranta, V. (eds) Methods of Mathematical Oncology. MMDS 2020. Springer Proceedings in Mathematics & Statistics, vol 370. Springer, Singapore. https://doi.org/10.1007/978-981-16-4866-3_8

Download citation

Publish with us

Policies and ethics