Skip to main content

2D Materials for Overall Water Splitting

  • Living reference work entry
  • First Online:
Handbook of Energy Materials
  • 134 Accesses

Abstract

The global energy crisis and environmental concerns have prompted a search for alternative energy sources, with electrochemical overall water splitting emerging as a promising method for converting renewable energy’s electrical output into storable and transportable chemical fuels, mainly hydrogen and oxygen. The development of economic and highly active electrocatalysts for both H2 and O2 evolution processes is critical for industrial water splitting. Among them, two-dimensional (2D)-based electrocatalysts have gained tremendous attention in water splitting applications due to their special benefits like high surface area, activity, and stability, providing structural and functional design abilities. Additionally, these structures exhibit significant surface defects with impressive mass transport and fast electron transfer for boosting electrocatalytic activity. Special attention is paid to mechanisms of the overall water splitting process for the production of hydrogen with the help of 2D materials such as carbons, oxides, polymers, MXenes (carbides, nitrides, carbonitrides), chalcogenides, and metal-organic frameworks (MOFs). Future 2D-based materials design and development should involve a combination of theoretical calculations, electrochemical measurements, and advanced spectroscopic analysis. The goal of this chapter is to highlight the current state of 2D-based electrocatalyst development and possible applications, as well as important difficulties and opportunities for future electrochemical water splitting technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A.T. Aqueel Ahmed et al., A morphologically engineered robust bifunctional CuCo2O4 nanosheet catalyst for highly efficient overall water splitting. Adv. Mater. Interfaces 7(2), 1901515 (2020)

    Article  CAS  Google Scholar 

  • P. Babar et al., Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis. ACS Sustain. Chem. Eng. 7(11), 10035–10043 (2019)

    Article  CAS  Google Scholar 

  • S. Bhunia et al., Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework. ACS Appl. Mater. Interfaces 9(28), 23843–23851 (2017)

    Article  CAS  Google Scholar 

  • X. Bu et al., Efficient and stable electrocatalysts for water splitting. MRS Bull. 45(7), 531–538 (2020)

    Article  CAS  Google Scholar 

  • M. Chen et al., Hybrids of fullerenes and 2D nanomaterials. Adv.Sci. 6(1), 1800941 (2019)

    Article  CAS  Google Scholar 

  • Y. Chen et al., Strategies of engineering 2D nanomaterial-based electrocatalysts toward hydrogen evolution reaction. Mater.Renew. Sustain. Energy 9(2), 1–11 (2020)

    Article  CAS  Google Scholar 

  • C. Daulbayev et al., 0D, 1D and 2D nanomaterials for visible photoelectrochemical water splitting. A review. Int. J. Hydrog. Energy 45(58), 33325–33342 (2020)

    Article  CAS  Google Scholar 

  • G. Elmaci et al., Manganese Oxoborate-based nanostructures as novel oxygen evolution catalysts in neutral media. Chem. Nano Mat. 7(12), 1340–1347 (2021)

    CAS  Google Scholar 

  • A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    Article  CAS  Google Scholar 

  • Q. He et al., Vertically aligned ultrathin 1T-WS2 nanosheets enhanced the electrocatalytic hydrogen evolution. Nanoscale Res. Lett. 13(1), 1–9 (2018)

    Article  CAS  Google Scholar 

  • J. Hei et al., NiFeP nanosheets on N-doped carbon sponge as a hierarchically structured bifunctional electrocatalyst for efficient overall water splitting. Appl. Surf. Sci. 549, 149297 (2021)

    Article  CAS  Google Scholar 

  • C. Hu, L. Dai, Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29(9), 1604942 (2017)

    Article  CAS  Google Scholar 

  • M. Huang et al., Self-transforming ultrathin α-co (OH) 2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 13(3), 810–817 (2020)

    Article  CAS  Google Scholar 

  • K. Jayaramulu et al., Nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal-organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution. Adv. Funct. Mater. 27(33), 1700451 (2017)

    Article  CAS  Google Scholar 

  • H. Jin et al., In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 137(7), 2688–2694 (2015)

    Article  CAS  Google Scholar 

  • T.H. Lau et al., Transition metal atom doping of the basal plane of MoS 2 monolayer nanosheets for electrochemical hydrogen evolution. Chem. Sci. 9(21), 4769–4776 (2018)

    Article  CAS  Google Scholar 

  • Y. Li et al., Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Cat. Sci. Technol. 7(3), 545–559 (2017)

    Article  CAS  Google Scholar 

  • R. Li et al., Ni3ZnC0. 7 nanodots decorating nitrogen-doped carbon nanotube arrays as a self-standing bifunctional electrocatalyst for water splitting. Carbon 148, 496–503 (2019)

    Article  CAS  Google Scholar 

  • W. Liao et al., Sulfur and oxygen dual vacancies manipulation on 2D NiS2/CeO2 hybrid heterostructure to boost overall water splitting activity. Mater. Today Chem. 24, 100791 (2022)

    Article  CAS  Google Scholar 

  • G. Liu et al., Vertically aligned two-dimensional SnS 2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting. J. Mater. Chem. A 5(5), 1989–1995 (2017)

    Article  CAS  Google Scholar 

  • M. Liu et al., Overall water-splitting electrocatalysts based on 2D CoNi-metal-organic frameworks and its derivative. Adv. Mater. Interfaces 5(21), 1800849 (2018)

    Article  CAS  Google Scholar 

  • D.J. Martin et al., Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 136(36), 12568–12571 (2014)

    Article  CAS  Google Scholar 

  • J. Masud et al., Copper selenides as high-efficiency electrocatalysts for oxygen evolution reaction. ACS Appl. Energy Mater. 1(8), 4075–4083 (2018)

    Article  CAS  Google Scholar 

  • Z. Ni et al., Recent advances in layered tungsten disulfide as electrocatalyst for water splitting. Chem. Cat. Chem. 12(20), 4962–4999 (2020)

    CAS  Google Scholar 

  • L. Niu et al., Electrocatalytic water splitting using organic polymer materials-based hybrid catalysts. MRS Bull. 45(7), 562–568 (2020)

    Article  CAS  Google Scholar 

  • D. Ozer, Fabrication and functionalization strategies of MOFs and their derived materials “MOF architecture”, in Applications of Metal–Organic Frameworks and their Derived Materials, (Wiley, New York, 2020), pp. 63–100

    Chapter  Google Scholar 

  • D. Ozer, Z. Ertekin, Nanocomposites of 2D materials for flexible Li-ion batteries, in Energy Applications of 2D Nanomaterials, (CRC Press, United States, 2022), pp. 301–318

    Google Scholar 

  • M. Pandey, K.S. Thygesen, Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study. J. Phys. Chem. C 121(25), 13593–13598 (2017)

    Article  CAS  Google Scholar 

  • S.-Y. Pang et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141(24), 9610–9616 (2019)

    Article  CAS  Google Scholar 

  • J. Rong et al., Self-directed hierarchical Cu3 (PO4) 2/cu-BDC nanosheets array based on copper foam as an efficient and durable electrocatalyst for overall water splitting. Electrochim. Acta 313, 179–188 (2019)

    Article  CAS  Google Scholar 

  • T. Saravanakumar et al., Hierarchical 2D/2D interface of nickel aluminum oxide and nickel aluminum layered double hydroxide nanoflowers: An efficient and robust electrocatalyt for overall water splitting. Electrochim. Acta 392, 139029 (2021)

    Article  CAS  Google Scholar 

  • Z.W. Seh et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1(3), 589–594 (2016)

    Article  CAS  Google Scholar 

  • X. She et al., High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv. Energy Mater. 7(17), 1700025 (2017)

    Article  CAS  Google Scholar 

  • M.A.Z.G. Sial et al., Microporous 2D NiCoFe phosphate nanosheets supported on Ni foam for efficient overall water splitting in alkaline media. Nanoscale 10(27), 12975–12980 (2018)

    Article  Google Scholar 

  • A. Singh et al., MoSe2/SnS nanoheterostructures for water splitting. ACS Appl. Nano Mater. 5(3), 4293–4304 (2022)

    Google Scholar 

  • L.-A. Stern et al., Polymer-brush-templated three-dimensional molybdenum sulfide catalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 10(7), 6253–6261 (2018)

    Article  CAS  Google Scholar 

  • Y. Sun et al., Metallic two-dimensional metal-organic framework arrays for ultrafast water splitting. J. Power Sources 494, 229733 (2021)

    Article  CAS  Google Scholar 

  • D. Voiry et al., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13(12), 6222–6227 (2013a)

    Article  CAS  Google Scholar 

  • D. Voiry et al., Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12(9), 850–855 (2013b)

    Article  CAS  Google Scholar 

  • L. Wang et al., 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater. 30(48), 1801955 (2018a)

    Article  CAS  Google Scholar 

  • L. Wang et al., Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting. Angew. Chem. 130(13), 3512–3516 (2018b)

    Article  Google Scholar 

  • P. Wang et al., MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction. Int. J. Hydrog. Energy 44(31), 16566–16574 (2019)

    Article  CAS  Google Scholar 

  • P. Wang et al., A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting. J. Power Sources 474, 228621 (2020)

    Article  CAS  Google Scholar 

  • F. Wang et al., Compositional engineering of co (II) MOF/carbon-based overall water splitting Electrocatalysts: From synergistic effects to structure–activity relationships. Cryst. Growth Des. 22(5), 2775–2792 (2022)

    Article  CAS  Google Scholar 

  • J. Xie et al., Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013)

    Article  CAS  Google Scholar 

  • R. Yang et al., Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Appl. Catal. B Environ. 253, 131–139 (2019)

    Article  CAS  Google Scholar 

  • X. Yang et al., Recent advancements and future prospects in ultrathin 2D semiconductor-based photocatalysts for water splitting. Catalysts 10(10), 1111 (2020)

    Article  CAS  Google Scholar 

  • L. Yaqoob et al., Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electrocatalyst for oxygen evolution reaction (OER). Renew. Energy 156, 1040–1054 (2020)

    Article  CAS  Google Scholar 

  • J. Yin et al., Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 7(10), 1903070 (2020)

    Article  CAS  Google Scholar 

  • M.A. Younis et al., Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. BMC Mater. 1(1), 1–26 (2019)

    Google Scholar 

  • S. Yuan et al., 2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Appl. Phys. Rev. 7(2), 021304 (2020)

    Article  CAS  Google Scholar 

  • Y. Zhang et al., Chemical vapor deposition of monolayer WS2 nanosheets on au foils toward direct application in hydrogen evolution. Nano Res. 8(9), 2881–2890 (2015)

    Article  CAS  Google Scholar 

  • Y. Zhang et al., Cost-effective vertical carbon nanosheets/iron-based composites as efficient electrocatalysts for water splitting reaction. Chem. Mater. 30(14), 4762–4769 (2018)

    Article  CAS  Google Scholar 

  • S. Zhao et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1(12), 1–10 (2016)

    Article  CAS  Google Scholar 

  • X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Ozer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ertekin, Z., Ozer, D. (2022). 2D Materials for Overall Water Splitting. In: Gupta, R. (eds) Handbook of Energy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4480-1_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4480-1_72-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4480-1

  • Online ISBN: 978-981-16-4480-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics