Skip to main content

Introduction to Aeroengine Controls

  • Chapter
  • First Online:
Model-based Nonlinear Control of Aeroengines

Abstract

Gas turbine engines and its related technologies represent one of the most efficient forms of propulsion and power generation. Their applications range from land-based power generation, ground-based vehicle propulsion, on-board power and propulsion sources for marine ships, to aircraft propulsion and auxiliary power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an asymptotically linear system \(dx/dt = Ax\), it can be shown that for each symmetric \(Q > 0\) there exists a unique \(P > 0\) such that \(A^{T} P + PA = - Q\). Then \(V(x) = x^{T} Px\) is a Lyapunov function.

References

  1. Link, C. 2005. Recent advancements in aircraft engine health management (EHM) technologies and recommendations for the next step, GT-2005–68625.

    Google Scholar 

  2. Curtis, A., and S. Positron. 2007. Life remaining prognostics for airframe structural components. IEEE-4244-0525-1245.

    Google Scholar 

  3. Guidelines for integration of engine monitoring functions with on-board aircraft systems. 1996. SAE-AIR4061.

    Google Scholar 

  4. Donald, L., G. Sanjay, and M. Venti. 2003. Propulsion control and health management (PCHM) technology for flight test on the C-17 T-1 aircraft. NASA/TM-2004-213303.

    Google Scholar 

  5. Nobbs, S.G., S.W. Jacobs, and D.J. Donahue. 1992. Development of the full-envelop performance seeking control algorithm. AIAA-92–3745.

    Google Scholar 

  6. Gilyard, G., and J. Orme. 1993. Performance-seeking control: program overview and future directions. AIAA-93–3765-CP.

    Google Scholar 

  7. Gilyard, G., and J. Orme. 1992. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane. AIAA-92-3743.

    Google Scholar 

  8. Orme, J., and T. Conners. 1994. Supersonic flight test results of a performance seeking control algorithm on a NASA F-15 aircraft. AIAA-94-3210.

    Google Scholar 

  9. Monaco, J., and D. Ward, and A. Bateman. 2004. A retrofit architecture for model-based adaptive flight control. In AIAA 1st Intelligent Systems Technical Conference 20–22 Septe 2004, Chicago, Illinois. AIAA 2004-6281.

    Google Scholar 

  10. Litt, J., N. Shah, and T. Sowers. 2005. A demonstration of a retrofit architecture for intelligent control and diagnostics of a turbofan engine. NASA/TM-2005-214019.

    Google Scholar 

  11. Freeman, C., A.G. Wilson, I.J. Day, and M.A. Swinbanks. 1998. Experiments in active control of stall on an aeroengine gas turbine. ASME Journal of Turbomachinery 120: 637–647.

    Article  Google Scholar 

  12. Orme, J., J. DeLaat, R. Southwick, G. Gallops, and P. Doane. 1998. Development and testing of a high stability engine control (HISTEC) system. NASA/TM 1998-206562.

    Google Scholar 

  13. Southwick, R., G. Gallops, L. Kerr, R. Kielb, M. Welsh, J. DeLaat, and J. Orme. High stability engine control (HISTEC) flight test results. NASA/TM 1998-208655.

    Google Scholar 

  14. Ray, A., and J. Caplin. 2001. Life extending control of aircraft: Trade-off between flight performance and structural durability. The Aeronautical Journal 104: 397–408.

    Google Scholar 

  15. Jaw, L., and J. Mattingly. 2009. Aircraft Engine Controls: Design, System Analysis, and Health Monitoring. Virginia: AIAA Inc.

    Book  Google Scholar 

  16. Mattern, D., and L. Law. 1997. Experimental results of an active tip clearance control system for a centrifugal compressor. In Proceedings of International Gas Turbine Congress and Exposition.

    Google Scholar 

  17. Johnson, C., Y. Neumeier, D. Darling, S. Sattinger, M. Neumaier, and B. Zinn. 2001. Demonstration of active control of combustion instabilities on a full-scale gas turbine combustor. ASME. paper 2001-GT-0519.

    Google Scholar 

  18. Jaw, L.C., and S. Garg. Propulsion control technology development in the United States, NASA/TM-2005–213978.

    Google Scholar 

  19. Zhou, W., X. Shan, Z. Geng, and J. Huang. 2008. Establishment of state space model of turboshaft engine with self-optimized method. Journal of Aerospace Power 23 (12): 2314–2320.

    Google Scholar 

  20. Zheng, T., X. Wang, X. Luo, and Q. Li. 2005. Modified method of establishing the state space model of aeroengine. Journal of Propulsion Technology 26 (1): 46–49.

    Google Scholar 

  21. Zhao, L., D. Fan, and W. Shan. 2008. Single-spool turbofan engine model identification. Journal of Propulsion Technology 29 (6): 733–736.

    Google Scholar 

  22. Yang, G., J. Sun, H. Yao, J. Zang, A. Liu, X. Yi, and L. Zhang. 2006. Experimental verification of H∞/LTR method for aeroengine control systems. Acta Aeronautica et Astronautica Sinica 27 (5): 773–777.

    Google Scholar 

  23. Härefors, M. 1997. Application of H∞ robust control to the RM12 jet engine. Control Engineering Practice 5 (9): 1189–1201.

    Article  Google Scholar 

  24. Frederick, D.K., S. Garg, and S. Adibhatla. 2000. Turbofan engine control design using robust multivariable control technologies. IEEE Transactions on Control Systems Technology 8 (6): 961–970.

    Google Scholar 

  25. Wang, H., Y. Guo, and G. Li. 2008. Aero-engine control using two-degrees-of-freedom H∞ approach. In Proceedings of ISSCAA, pp. 1–5.

    Google Scholar 

  26. Embrechts, M.J., A.L. Schweizerhof, M. Bushman, et al. 2000. Neural network modeling of turbofan parameters. ASME paper 2000-GT-0036.

    Google Scholar 

  27. Zhuo, G., J. Sun, and G. Yang. 2004. Aeroengine modeling based on wavelet neural network. Journal Nanjing University of Aeronautics and Astronautics 36: 728–731.

    Google Scholar 

  28. Liu, Y., H. Xing, and S. Huang. 2012. Adaptive simulation of gas turbine performance using improved genetic algorithm. J Aerosp Power 27: 695–700.

    Google Scholar 

  29. Mu, J., D. Rees, and G. Liu. 2005. Advanced controller design for aircraft gas turbine engines. Control Engineering Practice 13 (8): 1001–1015.

    Article  Google Scholar 

  30. Lichtsinder, M., and Y. Levy. 2006. Jet engine model for control and real-time simulations. ASME Journal of Engineering for Gas Turbines and Power 128: 745–753.

    Article  Google Scholar 

  31. Wang, J., Z. Ye, and Z. Hu. 2014. Onboard real time modeling of aircraft engines with a Hammerstein-Wiener representation. Journal Aerosp Power 29: 2499–2506.

    Google Scholar 

  32. Irwin, G.W., K. Warwich, and K.J. Hunt. Neural network applications in control. IET Digital Library.

    Google Scholar 

  33. Ljung, L. 1999. System Identification: Theory for the User. 2nd ed. Upper Saddle River, NJ: PTR Prentice Hall.

    Google Scholar 

  34. Wang, J., Z. Ye, and Z. Hu. 2012. Nonlinear control of aircraft engines using a generalized Gronwall-Bellman lemma approach. ASME Journal of Engineering for Gas Turbines and Power 134 (9): 094502.

    Google Scholar 

  35. Zheng, K., T. Basar, and J. Bentsman. 2009. H∞ bumpless transfer under controller uncertainty. IEEE Transactions on Automatic Control 54 (7): 1718–1723.

    Article  MathSciNet  Google Scholar 

  36. Bendtsen, J.D., J. Stoustrup, and K. Trangbak. 2003. Bumpless transfer between advanced controllers with application to power plant control. In Proceedings of 42nd IEEE Conference on Decision and Control, pp. 2059–2064.

    Google Scholar 

  37. Martin, S., I. Wallace, and D.G. Bates. 2008. Development and validation of a civil aircraft engine simulation model for advanced controller design. ASME Journal of Engineering for Gas Turbines and Power, 130 (5): 051601:1–15.

    Google Scholar 

  38. Frederick, D.K., S. Garg, and S. Adibhatla. 2000. Turbofan engine control design using robust multivariable control technologies, IEEE Transactions on Control Systems Technology 8 (6): 961–970.

    Google Scholar 

  39. Tumer, M., N. Aouf, D.G. Bates, I. Postlethwaite, and B. Boulet. 2002. A switching scheme for full-envelope control of a V/STOL aircraft using LQ bumpless transfer. In Proceedings of 2002 IEEE International Conference on Control Applications, pp. 120–125.

    Google Scholar 

  40. Rugh, W., and J. Shamma. 2000. Research on gain scheduling. Automatica 36: 1401–1425.

    Article  MathSciNet  Google Scholar 

  41. Leith, D., and W. Leithead. 2000. Survey of gain-scheduling analysis and design. International Journal of Control 73 (11): 1001–1025.

    Article  MathSciNet  Google Scholar 

  42. Apkarian, P., P. Gahinet, and G. Becker. 1995. Self-scheduled H∞ control of linear parameter-varying systems: A design example. Automatica 31: 1251–1261.

    Article  MathSciNet  Google Scholar 

  43. Wu, F., X. Yang, A. Packard, and G. Becker. 1996. Induced L2-norm control for LPV systems with bounded parameter variation rates. International Journal of Robust and Nonlinear Control 6: 983–998.

    Article  MathSciNet  Google Scholar 

  44. Stilwell, D., and W. Rugh. 2000. Stability preserving interpolation methods for the synthesis of gain scheduled controllers. Automatica 36: 665–671.

    Article  MathSciNet  Google Scholar 

  45. Chang, Y., and B. Rasmussen. 2008. Stable controller interpolation for LPV systems. Proceedings of ACC 2008: 3082–3087.

    Google Scholar 

  46. Balas, G. 2002. Linear parameter-varying control and its application to a turbofan engine. International Journal of Robust and Nonlinear Control 12 (9): 763–793.

    Article  MathSciNet  Google Scholar 

  47. Bruzelius, F. 2004. Linear Parameter-varying Systems-an Approach to Gain Scheduling. PhD Thesis, Chalmers University, Göteborg, Sweden.

    Google Scholar 

  48. Henrion, D., L. Reberga, J. Bernussou, and F. Vary. 2004. Linearization and identification of aircraft turbofan engine models. In Proceedings of IFAC Symposium on Automatic Control in Aerospace, St. Petersburg.

    Google Scholar 

  49. Reberga, L., D. Henrion, J. Bernussou, and F. Vary. 2005. LPV modeling of a turbofan engine. In Proceedings of IFAC World Congress on Automatic Control in Aerospace, Prague, Czech Republic.

    Google Scholar 

  50. Vary, F., and L. Reberga. 2005. Programming and computing tools for jet engine control design. In Proceedings of IFAC World Congress on Automatic Control, Prague, Czech Republic.

    Google Scholar 

  51. Gilbert, W., D. Henrion, J. Bernussou, and D. Boyer. 2010. Polynomial LPV synthesis applied to turbofan engines. Control Engineering Practice 18: 1077–1083.

    Article  Google Scholar 

  52. Brunell, B.J., R.R. Bitmead, and A.J. Connolly. 2002. Nonlinear model predictive control of an aircrift gas turbine engine. In Proceedings of 41st IEEE Conference on Decision and Control, Las Vegas, USA.

    Google Scholar 

  53. Fleming, P.J., and R.C. Purshouse. 2002. Evolutionary algorithms in control systems engineering: A survey. Control Engineering Practice 10 (11): 1223–1241.

    Article  Google Scholar 

  54. Lyantsev, O.D., T.V. Breikin, G.G. Kulikov, and V.Y. Arkov. 2003. On-line performance optimization of aero engine control system. Automatica 39: 2115–2121.

    Article  Google Scholar 

  55. Yao, Y., and J. Sun. 2008. 2008, Aeroengine direct thrust control based on neural network inverse control. Journal of Propulsion Technology 29 (2): 249–252.

    Google Scholar 

  56. Qi, X., and D. Fan. 2005. Application of improved FSQP algorithm to turbofan engine nonlinear multivariable control. Journal of Propulsion Technology 26 (1): 58–61.

    Google Scholar 

  57. Åström, K.J., and B. Wittenmark. 1994. Adaptive Control. 2nd ed. Addison-Wesley Longman Publishing Co., Inc.,.

    Google Scholar 

  58. Shankar, S. 1999. Nonlinear Systems: Analysis. Stability and Control: Springer Verlag, New York.

    MATH  Google Scholar 

  59. Vidyasagar, M. 1993. Nonlinear Systems Analysis, 2nd ed. Englewood Cliffs, New Jersey: Prentice Hall.

    MATH  Google Scholar 

  60. Slotine, J.J.E., and W. Li. 1991. Applied Nonlinear Control. Englewood Cliffs, New Jersey: Prentice Hall.

    MATH  Google Scholar 

  61. Tokhi, M.O. 2004. Adaptive. Self-Tuning Control: Lecture Notes, University of Sheffield.

    Google Scholar 

  62. Isermann, R., K.H. Lachmann, and D. Matko 1992. Adaptive Control Systems, Prentice Hall.

    Google Scholar 

  63. Filatov, N.M., and H. Unbehauen. 2004. Adaptive Dual Control: Theory and Applications. Berlin Heidelberg: Springer.

    Book  Google Scholar 

  64. Richter, H. 2012. Advanced control of turbofan engines, Springer Science-Business Media, Chapter 5 on Gain Scheduling and Adaptation.

    Google Scholar 

  65. Samar, R. 1995. Robust Multi-Mode Control of High Performance Aeroengines. PhD Thesis, the University of Leicester.

    Google Scholar 

  66. Sutton, A.E. 1992. The application of multivariable control to a turbofan engine, Technical Report TMP1220, Defence Research Agency, Aerospace Division, Farnborough, Hampshire, UK.

    Google Scholar 

  67. Greig, A.W.M. Multivariable powerplant control-proof of concept, Technical Report DRA/AS/PTD/TR/94067/1, Defence Research Agency, Farnborough, Hampshire, UK, 1994.

    Google Scholar 

  68. Eisa, S.A., and H.P. Tyler. 1986. Closed loop control of an afterburning F100 gas turbine engine. In Proceedings of the American Control Conference, Seattle, WA, USA, pp. 266–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiqiang Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Zhang, W., Hu, Z. (2022). Introduction to Aeroengine Controls. In: Model-based Nonlinear Control of Aeroengines. Springer, Singapore. https://doi.org/10.1007/978-981-16-4453-5_1

Download citation

Publish with us

Policies and ethics