Skip to main content

Design of All Optical Binary Comparator

  • Conference paper
  • First Online:
Advanced Techniques for IoT Applications (EAIT 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 292))

  • 625 Accesses

Abstract

As traditional CMOS based designs are reaching its limit in performance, optical circuits pose for an alternative to the scientists. The advantage for these circuits are ultra-high speed and low power. Due its special gate structure, the realizations of some circuits by this technology may become easier. This paper proposes a binary comparator using all optical circuits. We show that inherent structure of all optical circuits make this realization easier with less number of gates in comparison to traditional CMOS designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore, G.E.: Cramming more components onto integrated circuits. J. Electron. 38(8), 183–191 (1965)

    Google Scholar 

  2. Pavesi, L., Lockwood, D.J.: Silicon Photonics (Topics in Applied Physics). Springer, (2004). https://doi.org/10.1007/978-3-030-68222-4

  3. Zhang, Q.J., Wilson, G., Venkatachalam, R., Sarangan, A., Williamson, J., Wang, F.: Ultra fast neural models for analysis of electro/optical interconnects, In: 1997 Proceedings 47th Electronic Components and Technology Conference, pp. 1134-1137. San Jose, CA, USA (1997). https://doi.org/10.1109/ECTC.1997.606317

  4. Ho, R., et al.: Silicon photonic interconnects for large-scale computer systems. IEEE Micro 33(1), 68–78 (2013)

    Google Scholar 

  5. Tomonari, S.: Photonic crystal lasers for chip-to-chip and on-chip optical interconnects. IEEE J. Select. Top. Quant. Electron. 21(6), 728–737 (2015). https://doi.org/10.1109/JSTQE.2015.2420991

  6. Deb, A., Wille, R., Keszöcze, O., Hillmich, S., Drechsler, R.: Gates vs. splitters: contradictory optimization objectives in the synthesis of optical circuits. ACM J. Emerg. Technol. Comput. Sys. 13, 1–13 (2016)

    Article  Google Scholar 

  7. Deb, A., Wille, R., Keszöcze, O., Shirinzadeh, S., Drechsler, R.: Synthesis of optical circuits using binary decision diagrams. Integrat. J. Elsevier 59, 42–51 (2017)

    Google Scholar 

  8. Deb, A., Wille, R., Drechsler, R.: OR-inverter graphs for the synthesis of optical circuits. In: 2017 IEEE 47th International Symposium on Multiple-Valued Logic (ISMVL), pp. 278–283. IEEE (2017)

    Google Scholar 

  9. Deb, A., Wille, R., Drechsler, R.: Dedicated synthesis for MZI-based optical circuits based on AND-inverter graphs. In: 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 233–238. IEEE (2017)

    Google Scholar 

  10. Bandyopadhyay, C., Das, R., Wille, R., Drechsler, R., Rahaman, H.: Synthesis of circuits based on all-optical Mach-Zehnder Interferometers using Binary Decision Diagrams. Microelectron. J. 71, 19–29 (2018). https://doi.org/10.1016/j.mejo.2017.11.008

    Article  Google Scholar 

  11. Kim, J.Y., Kang, J.M., Kim, T.Y., Han, S.K.: All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI: theory and experiment structures. J. Light. Technol. 24(9), 3392–3399 (2006)

    Article  Google Scholar 

  12. Martinez, J.M., Ramos, F., Mart, J.: 10 Gb/s reconfigurable optical logic gate using a single hybrid-integrated SOA-MZI. Fiber Integr. Opt. 27(1), 15–23 (2007)

    Article  Google Scholar 

  13. Taraphdar, C., Chattopadhyay, T., Roy, J.: Mach-Zehnder Interferometer based all optical reversible logic gate. Opt. Laser Technol. 42(2), 249–259 (2010)

    Article  Google Scholar 

  14. Cherri, A.K., Al-Zayed, A.S.: Circuit designs of ultra-fast all-optical modified signed-digit adders using semiconductor optical amplifier and Mach-Zehnder interferometer. Optik – Int. J. Light Electron Opt. 121(17), 1577–1585 (2010)

    Article  Google Scholar 

  15. Sribhashyam, S., Ramachandran, M., Prince, S., Ravi, B.R.: Design of full adder and subtractor based on MZI—SOA. In: Proceedings of IEEE International Conference on Signal Processing and Communication Systems, pp. 19–21 (2015)

    Google Scholar 

  16. Al-Zayed, A., Cherri, A.: Improved all-optical modified signed-digit adders using semiconductor optical amplifier and Mach-Zehnder interferometer. Opt. Laser Technol. 42(5), 810–818 (2010)

    Article  Google Scholar 

  17. Thapliyal, H., Ranganathan, N.: A new reversible design of BCD adder, pp. 1–4 (2011)

    Google Scholar 

  18. Roy, S., Deb, A., Das, D.K.: Delay Efficient All Optical Carry Lookahead Adder, Chapter 21 Springer Science and Business Media LLC (2019)

    Google Scholar 

  19. Datta, K., Chattopadhyay, T., Sengupta, I.: All optical design of binary adders using semiconductor optical amplifier assisted Mach-Zehnder interferometer. Microelectron. J. Elsevier 46(9), 839–847 (2015)

    Article  Google Scholar 

  20. Saurabh, K., Thapliyal, H., Ranganathan, N.: Mach-Zehnder interferometer based design of all optical reversible binary adder. In: Proceedings of the Conference on Design, Automation and Test in Europe. EDA Consortium (2012)

    Google Scholar 

  21. Dutta, P., Bandyopadhyay, C., Giri, C., Rahaman, H.: Mach-Zehnder Interferometer based all optical reversible carry-lookahead adder, In: IEEE Computer Society Annual Symposium on VLSI, pp. 412–417 (2014)

    Google Scholar 

  22. Jia, M., Shuguo, L.: A novel implementation of 4-bit carry look-ahead adder. In: 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 1–2. IEEE (2017)

    Google Scholar 

  23. Maity, G., Chattopadhyay, T., Roy, J., Maity, S.: All-optical reversible multiplexer. In: Proceedings of Computers and Devices for Communication(CODEC), pp. 1–3 (2009)

    Google Scholar 

  24. Datta, K., Sengupta, I.: All Optical Reversible Multiplexer Design using Mach-Zehnder Interferometer. In: International Conference on VLSI Design, pp. 539–544 (2014)

    Google Scholar 

  25. Scaffardi, M.P., Ghelfi, P., Lazzeri, E., Poti, L., Bogoni, A.: Photonic processing for digital comparison and full addition based on semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 14(3), 826–833 (2008)

    Article  Google Scholar 

  26. Wang, Q., Zhu, G., Chen, H., Jaques, J., Leuthold, J., Piccirilli, A.B., Dutta, N.K.: Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme. IEEE J. Sel. Top. Quantum Electron. 40(6), 703–710 (2004)

    Article  Google Scholar 

  27. Morris Mano, M.: Digital Logic and Computer Design, Pearson Education India (2017)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of DST funded project “DST/ICPS/CPS-Individual/2018/403(G)”.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, S., Das, D.K. (2022). Design of All Optical Binary Comparator. In: Mandal, J.K., De, D. (eds) Advanced Techniques for IoT Applications. EAIT 2021. Lecture Notes in Networks and Systems, vol 292. Springer, Singapore. https://doi.org/10.1007/978-981-16-4435-1_56

Download citation

Publish with us

Policies and ethics