Skip to main content

Distortion of Gravitational-Wave Signals by Astrophysical Environments

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy
  • 1353 Accesses

Abstract

Many objects discovered by LIGO and Virgo are peculiar because they fall in a mass range which in the past was considered unpopulated by compact objects. Given the significance of the astrophysical implications, it is important to first understand how their masses are measured from gravitational-wave signals. How accurate is the measurement? Are there elements missing in our current model which may result in a bias? This chapter is dedicated to these questions. In particular, we will highlight several astrophysical factors which are not included in the standard model of GW sources but could result in a significant bias in the estimation of the mass. These factors include strong gravitational lensing, a relative motion of the source, a nearby massive object, and a gaseous background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    ADS  MathSciNet  Google Scholar 

  2. LIGO Scientific Collaboration and Virgo Collaboration (2019) Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo. Astrophys J Lett 882:L24

    Article  ADS  Google Scholar 

  3. LIGO Scientific Collaboration and Virgo Collaboration (2020) GW190425: observation of a compact binary coalescence with total mass ∼3.4 m ⊙. Astrophys J 892:L3

    Google Scholar 

  4. L. S. Collaboration and V. Collaboration (2020) Gw190521: a binary black hole merger with a total mass of \(150{M}_{{\bigodot }}\). Phys Rev Lett 125:101102

    Google Scholar 

  5. Miller MC, Hamilton DP (2002) Four-body effects in globular cluster black hole coalescence. Astrophys J 576:894–898

    Article  ADS  Google Scholar 

  6. Antonini F, Perets HB (2012) Secular evolution of compact binaries near massive black holes: gravitational Wave Sources and Other Exotica. Astrophys J 757:27

    Article  ADS  Google Scholar 

  7. Chen X, Li S, Cao Z (2019) Mass-redshift degeneracy for the gravitational-wave sources in the vicinity of supermassive black holes. Mon Not R Astron Soc 485:L141–L145

    Article  ADS  Google Scholar 

  8. Chen X, Xuan Z-Y, Peng P (2020) Fake massive black holes in the milli-hertz gravitational-wave band. Astrophys J 896:171

    Article  ADS  Google Scholar 

  9. Marković D (1993) Possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing, compact binaries. Phys Rev D 48:4738–4756

    Article  ADS  Google Scholar 

  10. Wang Y, Stebbins A, Turner EL (1996) Gravitational lensing of gravitational waves from merging neutron star binaries. Phys Rev Lett 77:2875–2878

    Article  ADS  Google Scholar 

  11. Nakamura TT (1998) Gravitational lensing of gravitational waves from inspiraling binaries by a point mass lens. Phys Rev Lett 80:1138–1141

    Article  ADS  Google Scholar 

  12. Takahashi R, Nakamura T (2003) Wave effects in the gravitational lensing of gravitational waves from chirping binaries. Astrophys J 595:1039–1051

    Article  ADS  Google Scholar 

  13. Schutz BF (1986) Determining the Hubble constant from gravitational wave observations. Nature 323:310

    Article  ADS  Google Scholar 

  14. Peters PC (1964) Gravitational radiation and the motion of two point masses. Phys Rev 136:1224–1232

    Article  ADS  Google Scholar 

  15. Sathyaprakash BS, Schutz BF (2009) Physics, astrophysics and cosmology with gravitational waves. Living Rev Relativ 12:2

    Article  ADS  Google Scholar 

  16. Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi DEA (2017) Laser interferometer space antenna. ArXiv e-prints

    Google Scholar 

  17. Broadhurst T, Diego JM, Smoot GI (2018) Reinterpreting low frequency LIGO/Virgo events as magnified stellar-mass black holes at cosmological distances. arXiv e-prints, arXiv:1802.05273

    Google Scholar 

  18. Smith GP, Jauzac M, Veitch J, Farr WM, Massey R, Richard J (2018) What if LIGO’s gravitational wave detections are strongly lensed by massive galaxy clusters? Mon Not R Astron Soc 475:3823–3828

    Article  ADS  Google Scholar 

  19. LIGO Scientific Collaboration and Virgo Collaboration (2019) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X 9:031040

    Google Scholar 

  20. Laguna P, Larson SL, Spergel D, Yunes N (2010) Integrated Sachs-Wolfe effect for gravitational radiation. Astrophys J Lett 715:L12–L15

    Article  ADS  Google Scholar 

  21. Torres-Orjuela A, Chen X, Cao Z, Amaro-Seoane P, Peng P (2019) Detecting the beaming effect of gravitational waves. Phys Rev D 100:063012

    Article  ADS  Google Scholar 

  22. Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, et al (2016) Astrophysical implications of the binary black-hole merger GW150914. Astrophys J Lett 818:L22

    Article  ADS  Google Scholar 

  23. Meiron Y, Kocsis B, Loeb A (2017) Detecting triple systems with gravitational wave observations. Astrophys J 834:200

    Article  ADS  Google Scholar 

  24. Inayoshi K, Tamanini N, Caprini C, Haiman Z (2017) Probing stellar binary black hole formation in galactic nuclei via the imprint of their center of mass acceleration on their gravitational wave signal. Phys Rev D 96:063014

    Article  ADS  Google Scholar 

  25. Tamanini N, Klein A, Bonvin C, Barausse E, Caprini C (2020) Peculiar acceleration of stellar-origin black hole binaries: measurement and biases with LISA. Phys Rev D 101:063002

    Article  ADS  Google Scholar 

  26. Robson T, Cornish NJ, Tamanini N, Toonen S (2018) Detecting hierarchical stellar systems with LISA. Phys Rev D 98:064012

    Article  ADS  Google Scholar 

  27. Chen X, Shen Z (2019) Retrieving the true masses of gravitational wave sources. Proceedings 17(1):4

    MathSciNet  Google Scholar 

  28. Caputo A, Sberna L, Toubiana A, Babak S, Barausse E, Marsat S, Pani P (2020) Gravitational-wave detection and parameter estimation for accreting black-hole binaries and their electromagnetic counterpart. Astrophys J 892:90

    Article  ADS  Google Scholar 

  29. Hannuksela OA, Haris K, Ng KKY, Kumar S, Mehta AK, Keitel D, Li TGF, Ajith P (2019) Search for gravitational lensing signatures in LIGO-virgo binary black hole events. Astrophys J 874:L2

    Article  ADS  Google Scholar 

  30. Torres-Orjuela A, Chen X, Amaro-Seoane P (2020) Phase shift of gravitational waves induced by aberration. Phys Rev D 101:083028

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, X. (2022). Distortion of Gravitational-Wave Signals by Astrophysical Environments. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_39

Download citation

Publish with us

Policies and ethics