Skip to main content

Genetics in Cataract: To Be or Not to Be

  • Chapter
  • First Online:
Genetics of Ocular Diseases
  • 608 Accesses

Abstract

Gene therapy in ophthalmology is even more pertinent as the eye is relatively immunoprivileged and has well-defined anatomy. It is also accessible to different routes of administration of gene therapy. Embryology of the lens starts with the neuroectoderm stimulating the thickened surface ectoderm with transcription factors including PAX 6, Sox2, and Six3 gene to form the lens placode. The invagination later leads to the formation of the lens pit or cup that then goes on to form the lens vesicle. The posterior cells of the lens vesicle lens fibers then elongate and fill in the central forming the primary lens fibers and the nuclear bow formation occurs. Maf gene mutation may cause opaque flecks in the developmental stage here. Genetic screening to identify genes associated with cataract can be planned in different strategies like linkage analysis, genome-wide association studies (GWAS), and candidate gene analysis. Cataract loci are identified using microsatellite markers, although single-nucleotide polymorphisms (SNPs) are rapidly gaining favor. Next-generation sequencing (NGS) is also used to identify new gene mutations. Genes Underlying Isolated or Primary Inherited Cataract may be divided into four groups based on subcellular localization and/or protein function, namely, cytoplasmic crystallins, membrane proteins, cytoskeletal proteins, and DNA/RNA-binding proteins. Genes Associated with Age-Related Cataract have been identified using a candidate gene approach and have found coding and noncoding variations in some of the same genes underlying inherited cataract that are also associated with age-related cataract including EPHA2 (1p). Despite the increasing genetic heterogenicity, genetic studies in cataract are scientifically and clinically relevant. They will provide a gene centric description of known Mendelian forms of inherited cataract.

“Our own genomes carry the story of evolution, written in DNA, the language of molecular genetics, and the narrative is unmistakable.”

Kenneth R. Miller

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614–8.

    Article  Google Scholar 

  2. Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA. The heritability of ocular traits. Surv Ophthalmol. 2010;55:561–83.

    Article  Google Scholar 

  3. Smelser GK. Embryolohy and morphology of the lens. Investig Ophthalmol Visual Sci. 1965;4:398–410.

    CAS  Google Scholar 

  4. Pierce GB, Midgley AR, Sri Ram J. The epithelial origin of basement membranes. J Exper Med. 1963;117:339.

    Article  Google Scholar 

  5. Kamachi Y, Uchikawa M, Collignon J, Lovell-Badge R, Kondoh H. Involvement of sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development. 1998;125:2521–32.

    Article  CAS  Google Scholar 

  6. Furuta Y, Hogan BL. BMP4 is essential for lens induction in the mouse embryo. Genes Dev. 1998;12:3764–75.

    Article  CAS  Google Scholar 

  7. Graw J. Eye development. Curr Topics Dev Biol. 2010;90:343–86. https://doi.org/10.1016/s0070-2153(10)90010-0.

    Article  Google Scholar 

  8. Titiyal JS, Pal N, Murthy GV, Gupta SK, Tandon R, Vajpayee RB, et al. Causes and temporal trends of blindness and severe visual impairment in children in schools for the blind in North India. Br J Ophthalmol. 2003;87:941–5.

    Article  CAS  Google Scholar 

  9. Shamanna BR, Dandona L, Rao GN. Economic burden of blindness in India. Indian J Ophthalmol. 1998;46:169–72.

    CAS  PubMed  Google Scholar 

  10. Gilbert C, Foster A. Childhood blindness in the context of VISION 2020 – the right to sight. Bull World Health Organ. 2001;79(3):227–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Foster A. Worldwide blindness, increasing but avoidable. Semin Ophthalmol. 1993;8(3):166–70.

    Article  Google Scholar 

  12. Rahi JS, Scripathi S, Gilbert C, Foster A. Childhood blindness in India: causes in 1318 blind school students in nine states. Eye (Lond). 1995;9(5):545–50.

    Article  Google Scholar 

  13. Apple DJ, Ram J, Foster A, Peng Q. Elimination of cataract blindness: a global perspective entering the new millennium. Surv Ophthalmol. 2000;45(Suppl 1):S1–196.

    PubMed  Google Scholar 

  14. Messina-Baas OM, Gonzalez-Huerta LM, Cuevas-Covarrubias SA. Two affected siblings with nuclear cataract associated with a novel missense mutation in the CRYGD gene. Mol Vis. 2006;12:995–1000.

    CAS  PubMed  Google Scholar 

  15. Rahi JS, Dezateux C. National cross sectional study of detection of congenital and infantile cataract in the United Kingdom: role of childhood screening and surveillance. The British Congenital Cataract Interest Group. BMJ. 1999;318(7180):362–5.

    Article  CAS  Google Scholar 

  16. Beby F, Morle L, Michon L, Bozon M, Edery P, Burillon C, et al. The genetics of hereditary cataract. J Fr Ophtalmol. 2003;26(4):400–8. French.

    CAS  PubMed  Google Scholar 

  17. Hejtmancik JF. Congenital cataracts and their molecular genetics. Semin Cell Dev Biol. 2008;19:134–49.

    Article  CAS  Google Scholar 

  18. Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res. 2007;26:555–97.

    Article  CAS  Google Scholar 

  19. Santana A, Waiswo M. The genetic and molecular basis of congenital cataract. Arq Bras Oftalmol. 2011;74:136–42.

    Article  Google Scholar 

  20. Huang B, He W. Molecular characteristics of inherited congenital cataracts. Eur J Med Genet. 2010;53:347–57.

    Article  Google Scholar 

  21. Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT. Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol. 2004;49:300–15.

    Article  Google Scholar 

  22. Clark AR, Lubsen NH, Slingsby C. sHSP in the eye lens: crystallin mutations, cataract and proteostasis. Int J Biochem Cell Biol. 2012;44:1687–97.

    Article  CAS  Google Scholar 

  23. Shiels A, Hejtmancik JF. Molecular genetics of cataract. Prog Mol Biol Transl Sci. 2015;134:203–18. https://doi.org/10.1016/bs.pmbts.2015.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Beyer EC, Ebihara L, Berthoud VM. Connexin mutants and cataracts. Front Pharmacol. 2013;4:43.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shiels A. Focus on molecules: major intrinsic protein. Exp Eye Res. 2012;101:107–8.

    Article  CAS  Google Scholar 

  26. Lo WK, Biswas SK, Brako L, Shiels A, Gu S, Jiang JX. Aquaporin-0 targets interlocking domains to control the integrity and transparency of the eye lens. Investig Ophthalmol Vis Sci. 2014;5:1202–12.

    Article  Google Scholar 

  27. Park JE, Son AI, Hua R, Wang L, Zhang X, Zhou R. Human cataract mutations in EPHA2 SAM domain alter receptor stability and function. PLoS One. 2012;7:e36564.

    Article  CAS  Google Scholar 

  28. Shi Y, De Maria A, Bennett T, Shiels A, Bassnett S. A role for epha2 in cell migration and refractive organization of the ocular lens. Investig Ophthalmol Vis Sci. 2012;53:551–9.

    Article  CAS  Google Scholar 

  29. Cheng C, Ansari MM, Cooper JA, Gong X. EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development. 2013;140:4237–45.

    Article  CAS  Google Scholar 

  30. Shiels A, Bennett TM, Knopf HL, et al. CHMP4B, a novel gene for autosomal dominant cataracts linked to chromosome 20q. Am J Hum Genet. 2007;81:596–606.

    Article  CAS  Google Scholar 

  31. Berry V, Gregory-Evans C, Emmett W, et al. Wolfram gene (WFS1) mutation causes autosomal dominant congenital nuclear cataract in humans. Eur J Hum Genet. 2013;21:1356–60.

    Article  CAS  Google Scholar 

  32. Muller M, Bhattacharya SS, Moore T, et al. Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum Mol Genet. 2009;18:1052–7.

    Article  Google Scholar 

  33. Somasundaram T, Bhat SP. Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter. J Biol Chem. 2004;279:44497–503.

    Article  CAS  Google Scholar 

  34. Shiels A, Bennett TM, Knopf HL, et al. The EPHA2 gene is associated with cataracts linked tochromosome 1p. Mol Vis. 2008;14:2042–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi Y, Shi X, Jin Y, et al. Mutation screening of HSF4 in 150 age-related cataract patients. Mol Vis. 2008;14:1850–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Z, Wang B, Hu S, Zhang C, Ma X, Qi Y. Genetic variations in GJA3, GJA8, LIM2, and agerelatedcataract in the Chinese population: a mutation screening study. Mol Vis. 2011;17:621–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou Z, Wang B, Luo Y, et al. Major intrinsic protein (MIP) polymorphism is associated with agerelatedcataract in Chinese. Mol Vis. 2011;17:2292–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Validandi V, Reddy VS, Srinivas PN, et al. Temperature-dependent structural and functional properties of a mutant (F71L) alphaA-crystallin: molecular basis for early onset of age-relatedcataract. FEBS Lett. 2011;585:3884–9.

    Article  CAS  Google Scholar 

  39. Jun G, Guo H, Klein BE, et al. EPHA2 is associated with age-related cortical cataract in mice andhumans. PLoS Genet. 2009;5:e1000584.

    Article  Google Scholar 

  40. Tan W, Hou S, Jiang Z, Hu Z, Yang P, Ye J. Association of EPHA2 polymorphisms and age-relatedcortical cataract in a Han Chinese population. Mol Vis. 2011;17:1553–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sundaresan P, Ravindran RD, Vashist P, et al. EPHA2 polymorphisms and age-related cataract in India. PLoS One. 2012;7:e33001.

    Article  CAS  Google Scholar 

  42. Yang J, Luo J, Zhou P, Fan Q, Luo Y, Lu Y. Association of the ephreceptor tyrosinekinase-type A2(EPHA2) gene polymorphism rs3754334 with age-related cataract risk: a meta-analysis. PLoS One. 2013;8:e71003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shetty, R., Koshy, A.S. (2022). Genetics in Cataract: To Be or Not to Be. In: Nema, H.V., Nema, N. (eds) Genetics of Ocular Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-4247-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4247-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4246-3

  • Online ISBN: 978-981-16-4247-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics