Skip to main content

Responsive Polymeric Architectures and Their Biomaterial Applications

  • Chapter
  • First Online:
Molecular Architectonics and Nanoarchitectonics

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Biofunctional polymers have been extensively studied for more than 50 years. Some of these polymers are defined as materials that respond to chemical stimuli, such as the concentration of certain chemicals and pH change, and physical stimuli, such as heat (temperature change), magnetic field, light, and electric field. They are also classified as “smart” materials. Needless to say, human beings are dynamic organisms. To achieve more sophisticated drug treatment, or to supersede biological functions, the use of smart materials is inevitable. The development of polymer chemistry that precisely controls the molecular chain has contributed to the development of smart materials. Moreover, integration with nanotechnology is also essential. In this chapter, how to design smart materials and how it applies to the biomedical fields are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kushmerick J (2009) Molecular transistors scrutinized. Nature 462:994–995

    Article  CAS  Google Scholar 

  2. Robert F Service (2005) Nanotechnology takes aim at cancer. Science 310:1132–1134

    Article  Google Scholar 

  3. Robert F Service (2005) Calls rise for more research on toxicology of nanomaterials. Science 310:1609

    Article  Google Scholar 

  4. Mirkin CA (1999) Tweezers for the nanotool kit. Science 286:2095–2096

    Article  CAS  Google Scholar 

  5. Dufrene YF (2008) AFM for nanoscale microbe analysis. Analyst 133:297–301

    Article  CAS  Google Scholar 

  6. Tambe NS, Bhushan B (2008) Nanoscale friction and wear maps. Philos Transact A Math Phys Eng Sci 366:1405–1424

    CAS  Google Scholar 

  7. Holly FJ, Refojo MF (1975) Wettability of hydrogels I. Poly(2-hydroxyethyl methacrylate). J Biomed Mater Res 9:315–326

    Article  CAS  Google Scholar 

  8. Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications. In: Andrade JD (ed) Hydrogels for medical and related applications, ACS Symposium Series, vol 31. American Chemical Society, Washington, pp 1–36

    Chapter  Google Scholar 

  9. Hubbell JA, Thomas SN, Swartz MA (2009) Materials engineering for immunomodulation. Nature 462:449–460

    Article  CAS  Google Scholar 

  10. Ratner BD (2004) A history of biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier, New York, pp 10–19

    Google Scholar 

  11. Baier RE, Dutton RC (1969) Initial events in interactions of blood with a foreign surface. J Biomed Mater Res 3:191–206

    Article  CAS  Google Scholar 

  12. Vogler EA (2004) Role of water in biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials. in medicine, 2nd edn. Elsevier, New York, pp 59–65

    Google Scholar 

  13. Pancrazio JJ (2008) Neural interfaces at the nanoscale. Nanomed 3:823–830

    Article  CAS  Google Scholar 

  14. Lafuma A, Quere D (2003) Superhydrophobic states. Nat Mater 2:457–460

    Article  CAS  Google Scholar 

  15. Zheng Y, Gao X (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3:178–182

    Article  CAS  Google Scholar 

  16. Hoffman AS (2004) Applications of “smart polymers” as biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: An introduction to materials in medicine, 2nd edn. Elsevier, New York, pp 107–115

    Google Scholar 

  17. Ebara M (ed) (2016) Biomaterials nanoarchitectonics. Elsevier, New York

    Google Scholar 

  18. Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim Y-J, Hoffman JM, Uto K, Aoyagi T (2014) Smart biomaterials, NIMS monographs. Springer, Tokyo

    Book  Google Scholar 

  19. Perloff R, Sternberg RJ, Urbina S (1996) Intelligence: knowns and unknowns. Am Psychol 51

    Google Scholar 

  20. Ebara M, Kikuchi A, Sakai K, Okano T (2004) Fast shrinkable materials. In: Yui N, Mrsny RJ, Park K (eds) Reflexive polymers and hydrogels: understanding and designing fast responsive polymeric systems. CRC Press, Boca Raton, FL, pp 219–244

    Google Scholar 

  21. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Pure Appl Chem 2:1441–1455

    Article  CAS  Google Scholar 

  22. Smidsrod O, Guillet JE (1969) Study of polymer-solute interactions by gas chromatography. Macromolecules 2:272–277

    Article  Google Scholar 

  23. Hoffman AS (1987) Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release 6:297–305

    Article  CAS  Google Scholar 

  24. Monji N, Hoffman AS (1987) A novel immunoassay system and bioseparation process based on thermal phase-separating polymers. Appl Biochem Biotechnol 14:107–120

    Article  CAS  Google Scholar 

  25. Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52

    Article  CAS  Google Scholar 

  26. Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2003) Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 4:344–349

    Article  CAS  Google Scholar 

  27. Uenoyama S, Hoffman AS (1988) Synthesis and characterization of acrylamide-N-isopropylacrylamide copolymer grafts on silicone rubber substrates. Radiat Phys Chem 32:605–608

    CAS  Google Scholar 

  28. Lahann J, Langer R (2005) Smart materials with dynamically controllable surfaces. MRS Bull 30:185–188

    Article  CAS  Google Scholar 

  29. Stayton PS, Shimoboji T, Long C, Chilkoti A, Chen G, Harris JM, Hoffman AS (1995) Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 378:472–474

    Article  CAS  Google Scholar 

  30. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2004) Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5:505–510

    Article  CAS  Google Scholar 

  31. Aoyagi T, Ebara M, Sakai K, Sakurai Y, Okano T (2000) Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym Ed 11:101–110

    Article  CAS  Google Scholar 

  32. Ebara M, Aoyagi T, Sakai K, Okano T (2001) The incorporation of carboxylate groups into temperature-responsive poly(N-isopropylacrylamide)-based hydrogels promotes rapid gel shrinking. J Polym Sci Part A Polym Chem 39:335–342

    Article  CAS  Google Scholar 

  33. Ebara M, Aoyagi T, Sakai K, Okano T (2000) Introducing reactive carboxyl side chains retains phase transition temperature sensitivity in N-isopropylacrylamide copolymer gels. Macromolecules 33:8312–8316

    Article  CAS  Google Scholar 

  34. Yoshida T, Aoyagi T, Kokufuta E, Okano T (2003) Newly designed hydrogel with both sensitive thermo-response and biodegradability. J Polym Sci Part A Polym Chem 41:779–787

    Article  CAS  Google Scholar 

  35. Maeda T, Yamamoto K, Aoyagi T (2006) Importance of bound water in hydration-dehydration behavior of hydroxylated poly(N-isopropylacrylamide). J Colloid Interface Sci 302:467–474

    Article  CAS  Google Scholar 

  36. Dupuy A, Lehmann S, Cristol J (2005) Protein biochip systems for the clinical laboratory. Clin Chem Lab Med 43:1291–1302

    CAS  Google Scholar 

  37. Toner M, Irimia D (2005) Blood-on-a-chip. Annu Rev Biomed Eng 7:77–103

    Article  CAS  Google Scholar 

  38. Kulkarni S, Schilli C, Grin B, Müller AH, Hoffman AS, Stayton PS (2006) Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique. Biomacromolecules 7:2736–2741

    Article  CAS  Google Scholar 

  39. Kulkarni S, Schilli C, Müller AH, Hoffman AS, Stayton PS (2004) Reversible meso-scale smart polymer–protein particles of controlled sizes. Bioconjug Chem 15:747–753

    Article  CAS  Google Scholar 

  40. Malmstadt N, Hoffman AS, Stayton PS (2004) “Smart” mobile affinity matrix for microfluidic immunoassays. Lab Chip 4:412–415

    Article  CAS  Google Scholar 

  41. Malmstadt N, Yager P, Hoffman AS, Stayton PS (2003) A smart microfluidic affinity chromatography matrix composed of poly(N-isopropylacrylamide)-coated beads. Anal Chem 75:2943–2949

    Article  CAS  Google Scholar 

  42. Ebara M, Hoffman JM, Hoffman AS, Stayton PS (2006) Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab Chip 6:843–848

    Article  CAS  Google Scholar 

  43. Ebara M, Hoffman JM, Stayton PS, Hoffman AS (2007) Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and ‘smart’ polymers. Radiat Phys Chem 76:1409–1413

    Article  CAS  Google Scholar 

  44. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418

    Article  CAS  Google Scholar 

  45. Urdea M, Penny LA, Olmsted SS, Giovanni MY, Kaspar P, Shepherd A, Wilson P, Dahl CA, Buchsbaum S, Moeller G, Hay Burgess DC (2006) Requirements for high impact diagnostics in the developing world. Nature 1:73–79

    Article  Google Scholar 

  46. Black RE, Morris SS, Bryce J (2003) Where and why are 10 million children dying every year? Lancet 361:2226–2234

    Article  Google Scholar 

  47. World Health Organization (2005) Making every mother and child count. WHO, Geneva

    Google Scholar 

  48. Price CP (2001) Regular review: point of care testing. Br Med J 332:1285–1288

    Article  Google Scholar 

  49. Fu E, Chinowsky T, Foley J, Weinstein J, Yager P (2004) Characterization of a wavelength-tunable surface plasmon resonance microscope. Rev Sci Instrum 75:2300–2304

    Article  CAS  Google Scholar 

  50. Fu E, Foley J, Yager P (2003) Wavelength-tunable surface plasmon resonance microscope. Rev Sci Instrum 74:3182–3184

    Article  CAS  Google Scholar 

  51. Lai JJ, Hoffman JM, Ebara M, Hoffman AS, Estournes C, Wattiaux A, Stayton PS (2007) Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir 23:7385–7391

    Article  CAS  Google Scholar 

  52. Lai JJ, Nelson KE, Nash MA, Hoffman AS, Yager P, Stayton PS (2009) Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip 9:1997–2002

    Article  CAS  Google Scholar 

  53. Beebe DJ, Moor JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Article  CAS  Google Scholar 

  54. Yu Q, Bauer JM, Moore JS, Beebe DJ (2001) Responsive biomimetic hydrogel valve for microfluidics. Appl Phys Lett 78:2589–2591

    Article  CAS  Google Scholar 

  55. Moorthy J, Beebe DJ (2003) Organic and biomimetic designs for microfluidic systems. Anal Chem 75:292A–301A

    Article  CAS  Google Scholar 

  56. Saitoh T, Suzuki Y, Hiraide M (2002) Preparation of poly(N-isopropylacrylamide)-modified glass surface for flow control in microfluidics. Anal Sci 18:203–205

    Article  CAS  Google Scholar 

  57. Idota N, Kikuchi A, Kobayashi J, Sakai K, Okano T (2005) Microfluidic valves comprising nanolayered thermoresponsive polymer-grafted capillaries. Adv Mater 17:2723–2727

    Article  CAS  Google Scholar 

  58. Kollman PA (1977) Noncovalent interactions. Acc Chem Res 10:365–371

    Article  CAS  Google Scholar 

  59. Sui ZJ, Murphy WL (2008) Nanoscale mechanisms for assembly of biomaterials. In: Shi D (ed) Nanoscience and its applications to biomedicine. Springer, New York

    Google Scholar 

  60. Alfarano C et al (2005) The biomolecular interaction network database and related tools. Nucleic Acids Res 33:D418–D424

    Article  CAS  Google Scholar 

  61. Garcia AJ, Gallant ND (2000) Stick and grip: measurement systems and quantitative analyses of integrin-mediated cell adhesion strength. Cell Biochem Biophys 39:61–73

    Article  Google Scholar 

  62. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  CAS  Google Scholar 

  63. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554

    Article  CAS  Google Scholar 

  64. Gallant ND, Capadona JR, Franzier AB, Collard DM, Garcia AJ (2002) Micropatterned surfaces to engineer focal adhesions for analysis of cell adhesion strengthening. Langmuir 18:5579–5584

    Article  CAS  Google Scholar 

  65. Horbett TA, Waldburger JJ, Ratner BD, Hoffman AS (1988) Cell adhesion to a series of hydrophilic-hydrophobic copolymers studied with a spinning disc apparatus. J Biomed Mater Res 22:383–404

    Article  CAS  Google Scholar 

  66. Mardilovich A, Kokkoli E (2004) Biomimetic peptide-amphiphiles for functional biomaterials: the role of GRGDSP and PHSRN. Biomacromolecules 5:950–957

    Article  CAS  Google Scholar 

  67. Litvinov RI, Shuman H, Benett JS, Weisel JW (2002) Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc Natl Acad Sci U S A 99:7426–7431

    Article  CAS  Google Scholar 

  68. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2004) Immobilization of cell adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and non-invasive cell harvest. Tissue Eng 10:1125–1135

    Article  CAS  Google Scholar 

  69. Loike JD, Sodeik B, Cao L, Leucona S, Weitz JI, Detmers PA, Wright SD, Silverstein SC (1991) CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci U S A 88:1044–1048

    Article  CAS  Google Scholar 

  70. Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci U S A 81:5985–5988

    Article  CAS  Google Scholar 

  71. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2008) The effect of extensible PEG tethers on shielding between grafted thermo-responsive polymer chains and integrin–RGD binding. Biomaterials 29:3650–3655

    Article  CAS  Google Scholar 

  72. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2008) A novel approach to observing synergy effects of PHSRN on integrin-RGD binding using intelligent surfaces. Adv Mater 20:3034–3038

    Article  CAS  Google Scholar 

  73. Garcia AJ, Schwarzbauer JE, Boettiger D (2002) Distinct activation states of α5β1 integrin show differential binding to RGD and synergy domains of fibronectin. Biochemistry 41:9063–9069

    Article  CAS  Google Scholar 

  74. Kao WJ, Liu Y, Gundloori R, Li J, Lee D (2002) Engineering endogenous inflammatory cells as delivery vehicles. J Control Release 78:219–233

    Article  CAS  Google Scholar 

  75. Scopes RK (1994) Protein purification: principles and practice. Springer, New York

    Book  Google Scholar 

  76. Shoemaker SG, Hoffman AS, Priest JH (1987) Synthesis and properties of vinyl monomer–enzyme conjugates. Conjugation of L-asparaginase with N-succinimidyl acrylate monomer. Appl Biochem Biotechnol 15:11–23

    Article  CAS  Google Scholar 

  77. Hoffman AS (1998) A commentary on the advantages and limitations of synthetic polymer–biomolecule conjugates. In: Okano T (ed) Biorelated functional polymers: controlled release and applications in biomedical engineering. Academic Press, New York, pp 231–248

    Google Scholar 

  78. Monji N, Cole CA, Hoffman AS (1994) Activated, N-substituted acrylamide polymers for antibody coupling: application to a novel membrane-based immunoassay. J Biomater Sci Polym Ed 5:407–420

    Article  CAS  Google Scholar 

  79. Luong JHT, Nguyen A (1990) Affinity partitioning of bioproducts. Biotechnology 8:306–307

    CAS  Google Scholar 

  80. Nguyen A, Luong JHT (1989) Synthesis and applications of water-soluble reactive polymers for purification and immobilization of biomolecules. Biotechnol Bioeng 34:1186–1190

    Article  CAS  Google Scholar 

  81. Dainiak MB et al (1998) Conjugates of monoclonal antibodies with polyelectrolyte complexes—an attempt to make an artificial chaperone. Biochim Biophys Acta 1381:279–285

    Article  CAS  Google Scholar 

  82. Gupta MN, Mattiasson B (1992) Unique application of immobilized proteins in bioanalytical systems. In: Suelter CH, Kricka L (eds) Methods of biochemical analysis. Wiley, New York, pp 1–34

    Google Scholar 

  83. Morikawa N, Matsuda T (2002) Thermoresponsive artificial extracellular matrix: NIPAAm-graft-copolymerized gelatin. J Biomater Sci Polym Ed 13:167–183

    Article  CAS  Google Scholar 

  84. Pennadam SS et al (2004) Protein–polymer nano-machines. Towards synthetic control of biological processes. J Nanobiotechnol 2:8–15

    Article  CAS  Google Scholar 

  85. Kochendoerfer GG et al (2003) Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science 299:884–887

    Article  CAS  Google Scholar 

  86. Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci U S A 103:9482–9487

    Article  CAS  Google Scholar 

  87. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021

    Article  CAS  Google Scholar 

  88. Ding ZL, Fong RB, Long CJ, Stayton PS, Hoffman AS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411:59–62

    Article  CAS  Google Scholar 

  89. Bontempo D, Maynard HD (2005) Streptavidin as a macroinitiator for polymerization: in situ protein–polymer conjugate formation. J Am Chem Soc 127:6508–6509

    Article  CAS  Google Scholar 

  90. Heredia KL, Maynard HD (2007) Synthesis of protein–polymer conjugates. Org Biomol Chem 5:45–53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Ebara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, L., Najimina, M., Ebara, M. (2022). Responsive Polymeric Architectures and Their Biomaterial Applications. In: Govindaraju, T., Ariga, K. (eds) Molecular Architectonics and Nanoarchitectonics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4189-3_20

Download citation

Publish with us

Policies and ethics