Skip to main content

Application of Biochar for Wastewater Treatment

  • Chapter
  • First Online:
Biochar and its Application in Bioremediation
  • 897 Accesses

Abstract

Due to the increased progress in the industrial activities, considerable quantities of inorganic (such heavy metals Pb2+, Cd2+, As2+, Cu2+, Ni2+, As3+, Cr7+, etc.) and organic (such as dyes, antibiotics, phenols, etc.) materials resulted as effluents. The discharge of these pollutants without proper management will cause a serious threat on the surrounding environment. Moreover, the accumulation of these contaminants in the waterway becomes a health threat as they are toxic, recalcitrant, mutagenic, and carcinogenic. Therefore, it is very necessary to exploit new adsorbents for efficient recovery of clean water. Activated biochar is derived from biomass by-products via thermal pyrolysis followed by activation step. The resulted biochar will own superior physical and chemical properties, which include high porosity, large surface area, enhanced surface properties, and excellent adsorptive performance toward the pollutants. These properties make the activated biochar excellent adsorbent that can be applied for water remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Batista EMCC, Juliana S, Matos TTS, Fornari MR, Ferreira TM, Szpoganicz B, de Freitas RA, Mangrich AS (2018) Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci Rep 8:10677. https://doi.org/10.1038/s41598-018-28794-z

    Article  CAS  Google Scholar 

  • Cai T, Liu X, Zhang J, Tie B, Lei M, Wei X, Peng O, Du H (2021) Silicate-modified oiltea camellia shell-derived biochar: a novel and cost-effective sorbent for cadmium removal. J Clean Prod 281:125390

    CAS  Google Scholar 

  • Chen Y, Li M, Li Y, Liu Y, Chen Y, Li H, Li L, Xu F, Jiang H, Chen L (2021) Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: adsorption behavior and mechanisms. Bioresour Technol 321:124413

    CAS  Google Scholar 

  • Claoston N, Samsuri AW, Husni MHA, Amran MSM (2014) Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manag Res 32(4):331–339

    CAS  Google Scholar 

  • Cuong DV, Wu P-C, Chen L-I, Hou C-H (2021) Active MnO2/biochar composite for efficient As(III) removal: insight into the mechanisms of redox transformation and adsorption. Water Res 188:116495

    CAS  Google Scholar 

  • Deng H, Li Q, Huang M, Li A, Zhang J, Li Y, Li S, Kang C, Mo W (2020) Removal of Zn(II), Mn(II) and Cu(II) by adsorption onto banana stalk biochar: adsorption process and mechanisms. Water Sci Technol 82(12):2962–2974

    CAS  Google Scholar 

  • El-Azazy M, El-Shafie AS, Al-Meer S, Al-Saad KA (2021) Eco-structured adsorptive removal of tigecycline from wastewater: date pits’ biochar versus the magnetic biochar. Nanomater 11:30. https://doi.org/10.3390/nano11010030

    Article  CAS  Google Scholar 

  • Gayathri R, Gopinath KP, Kumar PS (2021) Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: application in electroplating industrial wastewater. Chemosphere 262:128031

    CAS  Google Scholar 

  • Ha NTH, Toan NC, Kajitvichyanukul P (2021) Enhanced paraquat removal from contaminated water using cell-immobilized biochar. Clean Technol Environ Pol. https://doi.org/10.1007/s10098-020-01996-8

  • He L, Liu Z, Hu J, Qin C, Yao L, Zhang Y, Piao Y (2021) Sugarcane biochar as novel catalyst for highly efficient oxidative removal of organic compounds in water. Chem Eng J 405:126895

    CAS  Google Scholar 

  • Hoslett J, Ghazal H, Katsou E, Jouhar H (2021) The removal of tetracycline from water using biochar produced from agricultural discarded material. Sci Total Environ 751:141755

    CAS  Google Scholar 

  • Huang H, Guo T, Wang K, Li Y, Zhang G (2021) Efficient activation of persulfate by a magnetic recyclable rape straw biochar catalyst for the degradation of tetracycline hydrochloride in water. Sci Total Environ 758:143957

    CAS  Google Scholar 

  • Imran M, Iqbal MM, Iqbal J, Shah NS, Khan ZUH, Murtaza B, Amjad M, Ali S, Rizwan M (2021) Synthesis, characterization and application of novel MnO and CuO impregnated biochar composites to sequester arsenic (As) from water: modeling, thermodynamics and reusability. J Hazard Mater 401:123338

    CAS  Google Scholar 

  • Iqbal J, Shah NS, Sayed M, Niazi NK, Imran M, Khan JA, Khan ZUH, Hussien AGS, Polychronopoulou K, Howari F (2021) Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J Hazard Mater 403:123854

    CAS  Google Scholar 

  • Kamran U, Park S-J (2020) MnO2-decorated biochar composites of coconut shell and rice husk: an efficient lithium ions adsorption-desorption performance in aqueous media. Chemosphere 260:127500

    CAS  Google Scholar 

  • Li Y, Peng L, Li W (2020a) Adsorption behaviors on trace Pb2+ from water of biochar adsorbents from konjac starch. Adsorp Sci Technol 38(9–10):344–356

    Google Scholar 

  • Li F, Wan Y, Chen J, Hu X, Tsang DCW, Wang H, Gao B (2020b) Novel ball-milled biochar-vermiculite nanocomposites effectively adsorb aqueous As(V). Chemosphere 260:127566

    CAS  Google Scholar 

  • Li S, Yang F, Li J, Cheng K (2020c) Porous biochar-nanoscale zero-valent iron composites: synthesis, characterization and application for lead ion removal. Sci Total Environ 746:141037

    CAS  Google Scholar 

  • Li X, Zhang S, Zhang MM, Yu M, Chen H, Yang H, Xu Q (2021) One-step synthesis of mixed valence FeOX nanoparticles supported on biomass activated carbon for degradation of bisphenol A by activating peroxydisulfate. J Hazard Mater 409:124990

    Google Scholar 

  • Liu J, Luo K, Li X, Yang Q, Wang D, Wu Y, Chen Z, Huang X, Pi Z, Du W, Guan Z (2020) The biochar-supported iron-copper bimetallic composite activating oxygen system for simultaneous adsorption and degradation of tetracycline. Chem Eng J 402:126039

    CAS  Google Scholar 

  • Liu J, Ren S, Cao J, Tsang DCW, Beiyuan J, Peng Y, Fang F, She J, Yin M, Shen N, Wang J (2021) Highly efficient removal of thallium in wastewater by MnFe2O4-biocharComposite. J Hazard Mater 401:123311

    CAS  Google Scholar 

  • Macedo JCA, Gontijo ESJ, Herrera SG, Rangel EC, Komatsu D, Landers R, Rosa AH (2021) Organosulphur-modified biochar: an effective green adsorbent for removing metal species in aquatic systems. Surf Interf 22:100822

    Google Scholar 

  • Mahmoud ME, Mohamed AK, Abdel Salam M (2021) Self-decoration of N-doped graphene oxide 3-D hydrogel onto magnetic shrimp shell biochar for enhanced removal of hexavalent chromium. J Hazard Mater 408:124951

    CAS  Google Scholar 

  • Maneechakr P, Mongkollertlop S (2020) Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. J Environ Chem Eng 8:104467

    CAS  Google Scholar 

  • Mao W, Zhang L, Liu Y, Wang T, Bai Y, Guan Y (2021) Facile assembled N, S-codoped corn straw biochar loaded Bi2WO6 with the enhanced electron-rich feature for the efficient photocatalytic removal of ciprofloxacin and Cr(VI). Chemosphere 263:127988

    CAS  Google Scholar 

  • Mia S, Singh B, Dijkstra FA (2017) Aged biochar affects gross nitrogen mineralization and recovery; A 15 N study in two contrasting soils. Glob Change Biol Bioenergy 9:1196–1206

    CAS  Google Scholar 

  • Olu-Owolabi B, Diagboya PN, Mtunzi FM, Düring R-A (2021) Utilizing eco-friendly kaolinite-biochar composite adsorbent for removal of ivermectin in aqueous media. J Environ Manag 279:111619

    CAS  Google Scholar 

  • Peng Y, Tong W, Xie Y, Hu W, Li Y, Zhang Y, Wang Y (2021) Yeast biomass-induced Co2P/biochar composite for sulfonamide antibiotics degradation through peroxymonosulfate activation. Environ Pollut 268:115930

    CAS  Google Scholar 

  • Prasannamedh G, Kumar PS, Mehal R, Sharumith TJ, Surendhar D (2021) Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonization of sugarcane bagasse. J Hazard Mater 407:124825

    Google Scholar 

  • Qu J, Dong M, Wei S, Meng Q, Hu L, Hu Q, Wang L, Han W, Zhang Y (2020) Microwave-assisted one pot synthesis of β-cyclodextrin modified biochar for concurrent removal of Pb(II) and bisphenol a in water. Carbohydr Polym 250:117003

    CAS  Google Scholar 

  • Qu J, Wang Y, Tian X, Jiang Z, Deng F, Tao Y, Jiang Q, Wang L, Zhang Y (2021) KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: affecting factors, mechanisms and reusability exploration. J Hazard Mater 401:123292

    CAS  Google Scholar 

  • Rafiq MK, Bachmann RT, Rafiq MT, Shang Z, Joseph S, Long R (2016) Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLoS One 11(6):e0156894. https://doi.org/10.1371/journal.pone.0156894

    Article  CAS  Google Scholar 

  • Ramanayaka S, Kumar M, Etampawala T, Vithanage M (2020) Macro, colloidal and nanobiochar for oxytetracycline removal in synthetic hydrolyzed human urine. Environ Pollut 267:115683

    CAS  Google Scholar 

  • Salehi E, Askari M, Velashjerdi M, Arab B (2020) Phosphoric acid-treated spent tea residue biochar for wastewater decoloring: batch adsorption study and process intensification using multivariate data-based optimization. Chem Eng Process Process Intensif 158:108170

    CAS  Google Scholar 

  • Shao F, Wang Y, Mao Y, Shao T, Shang J (2020) Degradation of tetracycline in water by biochar supported nanosized iron activated persulfate. Chemosphere 261:127844

    CAS  Google Scholar 

  • Shirani Z, Song H, Bhatnagar A (2020) Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. Sci Total Environ 745:140789

    CAS  Google Scholar 

  • Silva RVS, Gonçalves AD, Vinhal JO, Cassella RJ, Santos RC, Sasso MAD, Peixoto BS, Borba-Santos LP, Rozental S, Azevedo DA, Romeiro GA (2021) Bioproducts from the pyrolysis of castor seed cake: basic dye adsorption capacity of biochar and antifungal activity of the aqueous phase. J Environ Chem Eng 9:104825

    CAS  Google Scholar 

  • Sylwan I, Runtti H, Westholm LJ, Romar H, Thorin E (2020) Heavy metal sorption by sludge-derived biochar with focus on Pb2+ sorption capacity at μg/L concentrations. Processes 8:1559

    CAS  Google Scholar 

  • Tomczyk A, SokoÅ‚owska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:191–215. https://doi.org/10.1007/s11157-020-09523-3

    Article  CAS  Google Scholar 

  • Ud Din S, Khan MS, Hussain S, Imran M, Haq S, Hafeez M, Zain-ul-Abdin, Ur Rehman F, Chen X (2021) Adsorptive mechanism of chromium adsorption on siltstone–nanomagnetite–biochar composite. J Inorg Organometallic Polym Mater 31:1608–1620. https://doi.org/10.1007/s10904-020-01829-7

    Article  CAS  Google Scholar 

  • Wan S, Qiu L, Li Y, Sun J, Gao B, He F, Wan W (2020) Accelerated antimony and copper removal by manganese oxide embedded in biochar with enlarged pore structure. Chem Eng J 402:126021

    CAS  Google Scholar 

  • Wang L, Li Z, Wang Y, Brookes PC, Wang F, Zhang Q, Xu J, Liu X (2021a) Performance and mechanisms for remediation of Cd(II) and As(III) co-contamination by magnetic biocharmicrobe biochemical composite: competition and synergy effects. Sci Total Environ 750:141672

    CAS  Google Scholar 

  • Wang Z, Li Y, Xie X, Wang Z (2021b) Bifunctional MnFe2O4/chitosan modified biochar composite for enhanced methyl orange removal based on adsorption and photo-Fenton process. Coll Surf A Physicochem Eng Asp 613:126104

    CAS  Google Scholar 

  • Wang H, Lou X, Hu Q, Sun T (2021c) Adsorption of antibiotics from water by using Chinese herbal medicine residues derived biochar: preparation and properties studies. J Mol Liq 325:114967

    CAS  Google Scholar 

  • Wen Z, Xi J, Lu J, Zhang Y, Cheng G, Zhang Y, Chen R (2021) Porous biochar-supported MnFe2O4 magnetic nanocomposite as an excellent adsorbent for simultaneous and effective removal of organic/inorganic arsenic from water. J Hazard Mater 411:124909

    CAS  Google Scholar 

  • Wu J, Wang T, Wang J, Zhang Y, Pan W-P (2021) A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: enhanced the ion exchange and precipitation capacity. Sci Total Environ 754:142150

    CAS  Google Scholar 

  • Yu J, Feng H, Tang L, Pang Y, Wang J, Zou J, Xie Q, Liu Y, Feng C, Wang J (2021a) Insight into the key factors in fast adsorption of organic pollutants by hierarchical porous biochar. J Hazard Mater 403:123610

    CAS  Google Scholar 

  • Yu W, Hu J, Yu Y, Ma D, Gong W, Qiu H, Hu Z, Gao H-W (2021b) Facile preparation of sulfonated biochar for highly efficient removal of toxic Pb(II) and Cd(II) from wastewater. Sci Total Environ 750:141545

    CAS  Google Scholar 

  • Zeng S, Choi Y-K (2021) Iron-activated bermudagrass-derived biochar for adsorption of aqueous sulfamethoxazole: effects of iron impregnation ratio on biochar properties, adsorption, and regeneration. Sci Total Environ 750:141691

    CAS  Google Scholar 

  • Zhang L, Jiang SC, Guan Y (2021a) Efficient removal of selenate in water by cationic poly (allyltrimethylammonium) grafted chitosan and biochar composite. Environ Res 194:1106

    Google Scholar 

  • Zhang Q, Wang Y, Wang Z, Zhang Z, Wang X, Yang Z (2021b) Active biochar support nano zerovalent iron for efficient removal of U(VI) from sewage water. J Alloys Compd 852:156993

    CAS  Google Scholar 

  • Zhang D, Zhang K, Hu X, He Q, Yan J, Xue Y (2021c) Cadmium removal by MgCl2 modified biochar derived from crayfish shell waste: batch adsorption, response surface analysis and fixed bed filtration. J Hazard Mater 408:124860

    CAS  Google Scholar 

  • Zhao N, Liu K, Yan B, Zhu L, Zhao C, Gao J, Ruan J, Zhang W, Qiu R (2021) Chlortetracycline hydrochloride removal by different biochar/Fe composites: a comparative study. J Hazard Mater 403:123889

    CAS  Google Scholar 

  • Zhu S, Wang S, Yang X, Tufail S, Chen C, Wang X, Shang J (2020) Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism. J Clean Prod 276:123009

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abd-Elhamid, A.I., Emran, M. (2021). Application of Biochar for Wastewater Treatment. In: Thapar Kapoor, R., Treichel, H., Shah, M.P. (eds) Biochar and its Application in Bioremediation. Springer, Singapore. https://doi.org/10.1007/978-981-16-4059-9_1

Download citation

Publish with us

Policies and ethics