Skip to main content

Abstract

The issue of food security has gained global significance in both political and social discourse due to a projected worldwide population increase by 2050. A major hindrance to achieving food security is the negative effects of insect pests. Insect pests competes with humans at the highest level for agricultural resources and it is estimated that their activities accounts for between 30–40% losses in food crops globally. For decades, numerous policies aimed at ameliorating the impact of insect pests on crops have been implemented. Prominent among these is the development and use of pesticides. Notwithstanding its effectiveness, this strategy is bereft with serious limitations such as poisoning, environmental pollution and insect pest developing resistance to pesticides. A sure way to defeat the food production challenges in a sustainable manner is to explore the use of new engineering techniques to develop superior crop varieties that are high-yielding, environmentally sustainable, cost-effective to produce and resistant to insect pests. Conventional breeding techniques to achieve this may be limited by time and space, hence the need for modern tools for the development of transgenic crops that are resistant to insects attack; these techniques hasten the process of insect pest control strategies in crop husbandry. The adoption of transgenic plants could reduce the usage of pesticides with broad-spectrum effect, in order to reduce the damages they cause. Since its introduction, transgenic plants have been a main tool for managing several insect pests of economic importance successfully. The adoption of such plants will reduce pesticides use. Despite its benefits, there is limited acceptance of transgenic plants globally. Notwithstanding this, the prospects of integrating transgenic plants in crop production to manage the negative effects of insect pests look promising as the demand for safe food and public involvement in evaluating such materials increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas MST (2018) Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egypt J Biol Pest Control 28:52

    Article  Google Scholar 

  • Acharjee S, Sarmah BK (2013) Transgenic Bacillus thuringiensis (Bt) chickpea: India’s most wanted genetically modified (GM) pulse crop. Afr J Biotechnol 12(39):5709–5713

    Google Scholar 

  • Acharjee S, Sarmah BK, Kumar P, Olsen K, Mahon R, Moar W, Moore A, Higgins T (2010) Transgenic chickpeas (Cicer arietinum L.) expressing a sequence-modified cry2Aa gene. Plant Sci 178:333–339

    Article  CAS  Google Scholar 

  • Addae PC, Ishiyaku MF, Tignegre JB, Ba MN, Bationo JB, Atokple IDK, Abudulai M, Dabiré-Binso CL, Traore F, Saba M, Umar ML, Adazebra GA, Onyekachi FN, Nemeth MA, Huesing JE, Beach LR, Higgins TJV, Hellmich RL, Pittendrigh BR (2020) Efficacy of a cry1Ab gene for control of Maruca vitrata (Lepidoptera: Crambidae) in cowpea (Fabales: Fabaceae). J Econ Entomol 113(2):974–979. https://doi.org/10.1093/jee/toz367

    Article  CAS  PubMed  Google Scholar 

  • Adenle AA (2011) Response to issues on GM agriculture in Africa: are transgenic crops safe? BMC Res Notes 4:388. https://doi.org/10.1186/1756-0500-4-388

    Article  PubMed  PubMed Central  Google Scholar 

  • Aekthong S, Rattanakul C (2019) Investigating the use of wasps Anagyrus lopezi as a biological control agent for cassava mealybugs: modeling and simulation. Adv Differ Equ 2019:237. https://doi.org/10.1186/s13662-019-2176-3

    Article  Google Scholar 

  • Anderson JA, Ellsworth PC, Faria JC, Head GP, Owen MDK, Pilcher CD, Shelton AM, Meissle M (2019) Genetically engineered crops: importance of diversified integrated pest management for agricultural sustainability. Front Bioeng Biotechnol 7:24. https://doi.org/10.3389/fbioe.2019.00024

    Article  PubMed  PubMed Central  Google Scholar 

  • Asante SK, Tamo M, Jackai LEN (2001) Integrated management of cowpea insect pests using elite cultivars, date of planting and minimum insecticide application. Afr Crop Sci J 9:655–665

    Article  Google Scholar 

  • Babu RM, Sajeena A, Seetharaman K, Reddy MS (2003) Advances in genetically engineered (transgenic) plants in pest management—an overview. Crop Prot 22:1071–1086

    Article  Google Scholar 

  • Baker GA, Burnham TA (2001) Consumer response to genetically modified foods: market segment analysis and implications for producers and policy makers. J Agric Resour Econ 26(2):387–403

    Google Scholar 

  • Baum J, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326. https://doi.org/10.1038/nbt1359

    Article  CAS  PubMed  Google Scholar 

  • Bellotti AC (2008) Cassava pests and their management. In: Capinera JL (ed) Encyclopedia of entomology, 2nd edn. Springer, Dordrecht

    Google Scholar 

  • Bett B, Gollasch S, Moore A et al (2017) Transgenic cowpeas (Vigna unguiculata L. Walp) expressing Bacillus thuringiensis Vip3Ba protein are protected against the Maruca pod borer (Maruca vitrata). Plant Cell Tiss Org Cult 131:335–345. https://doi.org/10.1007/s11240-017-1287-3

    Article  CAS  Google Scholar 

  • Betz FS, Hammond BG, Fuchs RL (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul Toxicol Pharmacol 32:156–173. https://doi.org/10.1006/rtph.2000.1426

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18(2):100–106

    Article  CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2008) GM crops: global socioeconomic and environmental impacts 1996–2006. PG Economics, Dorchester

    Google Scholar 

  • Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Policy 9(7–8):685–692

    Article  Google Scholar 

  • Chakraborty M, Reddy PS, Mustafa G, Rajesh G, Narasu VM, Udayasuriyan V, Rana D (2016) Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests. Transgenic Res 25(5):665–678. https://doi.org/10.1007/s11248-016-9954-4. Epub 2016 Mar 26

    Article  CAS  PubMed  Google Scholar 

  • Cho HS, Cao J, Ren JP, Earle ED (2001) Control of lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Plant Cell Rep 20(1):1–7. https://doi.org/10.1007/s002990000278

    Article  CAS  PubMed  Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse J, Gatehouse A (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308

    Article  CAS  PubMed  Google Scholar 

  • Culliney TW (2014) Crop losses to arthropods. In: Pimentel D, Peshin R (eds) Integrated pest management. Springer, Berlin, pp 201–225

    Chapter  Google Scholar 

  • Dara SK (2019) The new integrated Pest management paradigm for the modern age. J Integr Pest Manag 10(1):12. https://doi.org/10.1093/jipm/pmz010/Issues

    Article  Google Scholar 

  • Dessoky ES, Ismail RM, Elarabi NI, Abdelhadi AA, Abdallah NA (2021) Improvement of sugarcane for borer resistance using agrobacterium mediated transformation of cry1Ac gene. GM Crops Food 12(1):47–56. https://doi.org/10.1080/21645698.2020.1809318

    Article  PubMed  Google Scholar 

  • DeVilliers SM, Hoisington DA (2011) The trends and future of biotechnology crops for insect pest control. Afr J Biotechnol 10(23):4677–4681. https://doi.org/10.1104/pp.107.111096

    Article  CAS  Google Scholar 

  • Dunn SE, Vicini JL, Glenn KC, Fleischer DM, Greenhawt MJ (2017) The allergenicity of genetically modified foods from genetically engineered crops: a narrative and systemic review. Ann Allergy Asthma Immunol 119:214–222

    Article  PubMed  Google Scholar 

  • Eason CT, Miller A, MacMorran DB, Murphy EC (2014) Toxicology and ecotoxicology of Para-aminopropiophenone (PAPP)—a new predator control tool for stoats and feral cats in New Zealand. N Z J Ecol 38:177–188

    Google Scholar 

  • El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH (2009) Potential of ‘lure and kill’ for long-term pest management and eradication of invasive species. J Econ Entomol 102:815–835

    Article  CAS  PubMed  Google Scholar 

  • Falck-Zepeda J, Guillaume G, Sithole-Niang I (2013) Introduction and background. In: Falck-Zepeda J, Gruère G, Sithole-Niang I (eds) Genetically modified crops in Africa: economic and policy lessons from countries south of the Sahara, pp 1–24. https://doi.org/10.2499/9780896297951

    Chapter  Google Scholar 

  • FAO (2018) Five things to know about Africa’s latest foe, http://www.fao.org/fao-stories/article/en/c/1104446/. Assessed 3 Sept 2020

  • FAO (2019) New standards to curb the global spread of plant pests and diseases. http://www.fao.org/news/story/en/item/1187738/icode/. Accessed 6 Jun 2020

  • Fok M, Hofs JL, Gouse M, Kirsten JF (2007) Contextual appraisal of GM cotton diffusion in South Africa. Life Sci Int J 1(4):468–482

    Google Scholar 

  • Garcı’a-Lara S, Saldivar SO (2016) Insect science. In: Encyclopedia of food and health, pp 432–436. https://doi.org/10.1016/B978-0-12-384947-2.00396-2

    Chapter  Google Scholar 

  • Gatehouse JA (1991) Breeding for resistance to insects. In: Murray DR (ed) Advanced methods in plant breeding and biotechnology. CAB International, Wallingford, pp 250–276

    Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887. https://doi.org/10.1104/pp.107.111096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatehouse AMR, Hilder VA (1994) Genetic manipulation of crops for insect resistance. In: Marshall G, Walters D (eds) Molecular biology in crop protection. Chapman & Hall, London, pp 177–201

    Chapter  Google Scholar 

  • Gatehouse AMR, Boulter D, Hilder VA (1992) Potential of plant derived genes in the genetic manipulation of crops for insect resistance. In: Gatehouse AR, Hilder VA, Boulter D (eds) Plant genetic manipulation for crop protection. CAB International, Wallingford, pp 155–181

    Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, Secundo BS, Narasu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24(9):513–522. Epub 2005 Sep 20. PMID: 16172896. https://doi.org/10.1007/s00299-005-0947-7

    Article  CAS  PubMed  Google Scholar 

  • Goldberg RJ, Tjaden G (1990) Are b.t.t. plants really safe to eat? Biotechnology 8:1011–1014

    Google Scholar 

  • Goldson SL, Bourdôt GW, Brockerhoff EG, Byrom AE, Clout MN, McGlone MS, Nelson WA, Popay AJ, Suckling DM, Templeton MD (2015) New Zealand pest management: current and future challenges. J R Soc N Z 45(1):31–58. https://doi.org/10.1080/03036758.2014.1000343

    Article  Google Scholar 

  • Gonzales LA (2002) Likely transcendental effects of Agribiotechnology: the case of Bt hybrid corn in the Philippines. In: Paper presented during the symposium on Bt technology: facts and issues, May 5, Los Baños, Laguna, Philippines

    Google Scholar 

  • Gouse M (2013) Socioeconomic and farm-level effects of genetically modified crops: the case of Bt crops in South Africa. In: Falck-Zepeda J, Gruère G, Sithole-Niang I (eds) Genetically modified crops in Africa: economic and policy lessons from countries south of the Sahara. IFPRI, Washington, DC, pp 25–59. https://doi.org/10.2499/9780896297951

    Chapter  Google Scholar 

  • Grainnet (2007) Monsanto and Dow Agrosciences launch “SmartStax”, industry’s first-ever eight-gene stgraacked combination in corn. Grainnet. http://www.grainnet.com

    Google Scholar 

  • Hajek AE, Eilenberg J (2018) Natural enemies: an introduction to biological control. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • ISAAA (2020) Global status of commercialized biotech/GM crops: ISAAA brief no. 54. In: Executive summary. International Service for the Acquisition of Agri-biotech applications (ISAAA), Ithaca, NY, USA. http://www.isaaa.org/resources/publications/briefs/32/executivesummary

    Google Scholar 

  • Isman MB (2019) Challenges of pest management in the twenty first century: new tools and strategies to combat old and new foes alike. Front Agron 1:2–4. https://doi.org/10.3389/fagro.2019.00002

    Article  Google Scholar 

  • Jackson TA (2007) Biological control: a global perspective. In: Vincent C, Goettel MS, Lazarovitts G (eds) A novel bacterium for control of grass grubs. CABI, Wallingford, pp 160–168

    Google Scholar 

  • James C (2002) Global status of commercialized transgenic crops: 2002. ISAAA briefs no. 26. ISAAA, Ithaca, NY

    Google Scholar 

  • James C (2011) Global status of commercialized biotech/GM crops: 2011. In: ISAAA Brief No. 43. Executive summary. International Service for the Acquisition of Agri-biotech Applications (ISAAA), Ithaca, NY, USA. http://www.isaaa.org/resources/publications/briefs/43/executivesummary/pdf/Brief%2043%20-%20Executive%20Summary%20-%20English.pdf. Accessed Aug 2020

    Google Scholar 

  • Junne G (1991) The impacts of biotechnology on international trade. In: Sasson A, Costarini V (eds) Biotechnology in perspective: socioeconomic implications for developing countries. United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris

    Google Scholar 

  • Kalode MB, Sharma NC (1995) Host plant resistance to insects: progress, problems and future needs. In: Sharma HC, Rao MV (eds) Pests and pest management in India: the changing scenario. Plant protection Association of India, Hyderabad, pp 229–243

    Google Scholar 

  • Kennedy GG (2008) Integration of insect-resistant genetically modified crops within IPM programs. In: Romeis J et al (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Berlin, pp 1–26

    Google Scholar 

  • Koch MS, Ward JM, Levine SL, Baum GA, Vicini JL, Hammond BG (2015) The food and environmental safety of Bt crops. Front Plant Sci 6:283–336

    PubMed  PubMed Central  Google Scholar 

  • Koul O, Dhaliwal GS, Cuperus GW (eds) (2004) Integrated pest management: potential, constraints and challenges. CABI, Wallingford, p 336. ISBN 0-85199-6868

    Google Scholar 

  • Koul B, Srivastava S, Sanyal I, Tripathi B, Sharma V, Amla DV (2014) Transgenic tomato line expressing modified Bacillus thuringiensis cry1Ab gene showing complete resistance to two lepidopteran pests. SpringerPlus 3:84. https://doi.org/10.1186/2193-1801-3-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar H (2004) Tomato expressing Cry1A(b) insecticidal protein from Bacillus thuringiensis protected against tomato fruit borer, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) damage in the laboratory, greenhouse and field. Crop Prot 23(2):135–139

    Article  CAS  Google Scholar 

  • Kumar H, Kumar V (2004) Tomato expressing Cry1A(b) insecticidal protein from Bacillus thuringiensis protected against tomato fruit borer, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) damage in the laboratory, greenhouse and field. Crop Prot 23:135–139

    Article  CAS  Google Scholar 

  • Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR, Kaur S, Sharma RP (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4:33–37

    Article  CAS  Google Scholar 

  • Kumar P, Gambhir G, Gaur A, Sharma KC, Thakur AK, Srivastava DK (2018) Development of transgenic broccoli with cryIAa gene for resistance against diamondback moth (Plutella xylostella). 3 Biotech 8:299

    Article  PubMed  PubMed Central  Google Scholar 

  • Laizer HC, Chacha MN, Ndakidemi PA (2019) Farmers’ knowledge, perceptions and practices in managing weeds and insect pests of common bean in northern Tanzania. Sustainability 11:4076. https://doi.org/10.3390/su11154076

    Article  Google Scholar 

  • Larry LM, Richard ES (2002) Lectins and protease inhibitors as plant defenses against insects. J Agric Food Chem 50:6605–6611

    Article  CAS  Google Scholar 

  • Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318(5857):1769–1772

    Article  CAS  PubMed  Google Scholar 

  • Lu C (2010) The first approved transgenic rice in China. GM Crops 1(3):113–115

    Article  PubMed  Google Scholar 

  • Mabubu JI, Nawaz M, Hua H (2016) Advances of transgenic Bt-crops in insect pest management: an overview. J Entomol Zool Stud 4(3):48–52

    Google Scholar 

  • Malone LA et al (2008) Beyond Bt: alternative strategies for insectresistant genetically modified crops. In: Romeis J et al (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Berlin, pp 357–417

    Chapter  Google Scholar 

  • Mandaokar AD, Goyal RK, Shukla A, Bisaria S, Bhalla R, Reddy VS, Chaurasia A, Sharma RP, Altosaar I, Ananda Kumar P (2000) Transgenic tomato plants resistant to fruit borer (Helicoverpa armigera Hübner). Crop Prot 19:307–312

    Article  CAS  Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology (NY) 13(4):362–365

    CAS  Google Scholar 

  • Mi X, Ji X, Yang J, Liang L, Si H, Wu J, Zhang N, Wang D (2015) Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle. C R Biol 338(7):443–450

    Article  PubMed  Google Scholar 

  • Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, Dangour AD, Huybers P (2017) Climate change and global food systems: potential impacts on food security and undernutrition. Annu Rev Public Health 38(1):259–277

    Article  PubMed  Google Scholar 

  • Naranjo SE (2010) Impacts of Bt transgenic cotton on integrated pest management. J Agric Food Chem 59:5842

    Article  PubMed  CAS  Google Scholar 

  • Naranjo SE (2011) Empact of Bt transgenic cotton on integrated pest management. J Agric Food Chem 59:5842–5851

    Article  CAS  PubMed  Google Scholar 

  • Nelson CH (2001) Risk perception, behavior, and consumer response to genetically modified organisms. Am Behav Sci 44(8):1371–1388

    Article  Google Scholar 

  • Nwanze KF (1982) Relationship between cassava root yields and infestations by the mealybugs, Phenacoccus manihoti. Trop Pest Manag 28:27–32

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43. https://doi.org/10.1017/S0021859605005708

    Article  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production—losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Paarlberg R (2002) The real threat to GM crops in poor countries: consumer and policy resistance to GM foods in rich countries. Food Policy 27:247–250. https://doi.org/10.1016/S0306-9192(02)00014-3

    Article  Google Scholar 

  • Paarlberg R (2008) RABESA regional workshop policy options paper: toward a regional policy on GMO crops among COMESA/ASARECA countries. ACTS Press, Nairobi

    Google Scholar 

  • Panda N, Khush GS (1995) Host pest resistance to insects. CAB International, Wallingford, Oxon, p 341

    Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8(537):1–15

    PubMed  PubMed Central  Google Scholar 

  • Romeis J, Van Driesche RG, Barratt BIP, Bigler F (2008) Insect-resistant transgenic crops and biological control. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Progress in biological control, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8373-0_4

    Chapter  Google Scholar 

  • Saker MM, Salama HS, Salama M, El-Banna A, Abdel Ghany NM (2011) Production of transgenic tomato plants expressing cry 2Ab gene for the control of some lepidopterous insects endemic in Egypt. J Genet Eng Biotechnol 9(2):149–155

    Article  CAS  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic crops. Trends Biotechnol 16(4):168–174

    Article  CAS  Google Scholar 

  • Schünemann R, Knaak N, Fiuza LM (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. Int Sch Res Notices 2014:135675. https://doi.org/10.1155/2014/135675

    Article  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds, expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology 12:793–797

    CAS  Google Scholar 

  • Sharma HC (1993) Host plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot 12:11–34

    Article  Google Scholar 

  • Sharma HC (2005) Heliothis/Helicoverpa management—emerging trends and strategies for future research. Oxford & IBH Publishing, New Delhi

    Book  Google Scholar 

  • Shelton AM, Olmstead DL, Burkness EC, Hutchison WD, Dively G, Welty C (2013) Multi-state trials of Bt sweet corn varieties for control of the corn earworm. J Econ Entomol 106:2151–2159

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Hossain MJ, Paranjape V, Azad AK, Raman ML, Khan ASMM et al (2018) Bt eggplant project in Bangladesh: history, present status and future direction. Front Bioeng Biotechnol 6:106. https://doi.org/10.3389/fbioe.2018.00106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui HA, Asif M, Asad S, Naqvi RZ, Ajaz S, Umer N, Anjum N, Rauf I, Sarwar M, Arshad M, Amin I, Saeed M, Mukhtar Z, Bashir A, Mansoor S (2019) Development and evaluation of double gene transgenic cotton lines expressing cry toxins for protection against chewing insect pests. Sci Rep 9:11774. https://doi.org/10.1038/s41598-019-48188-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CM (ed) (2005) Plant resistance to arthropods: molecular and conventional approaches. Springer, Berlin

    Google Scholar 

  • Stewart LMD, Hirst M, Ferber ML, Merryweather AT, Cayley PJ, Possee RD (1991) Construction of an improved baculovirus insecticide containing an insectspecific toxin gene. Nature 352:85–88

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zhi-hong L, Wei L, Jie Z, Kang-lai HE, Li Z, Min L, Da-fang H (2015) Developing transgenic maize (Zea mays L.) with insect resistance and glyphosate tolerance by fusion gene transformation. J Integr Agric 14(2):305–313

    Article  CAS  Google Scholar 

  • Surendra KD (2019) The new integrated pest management paradigm for the modern age. J Integr Pest Manag 10(1):12. https://doi.org/10.1093/jipm/pmz010

    Article  Google Scholar 

  • Tabashnik BE, Carrière Y (2009) Insect resistance to genetically modified crops. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops. CAB International, Wallingford, pp 74–100

    Chapter  Google Scholar 

  • Tomalski MD, Miller LK (1991) Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature 352:82–85

    Article  CAS  PubMed  Google Scholar 

  • Tyczewska A, Woźniak E, Gracz J, Kuczyński J, Twardowski T (2018) Towards food security: current state and future prospects of agrobiotechnology. Trends Biotechnol 36(12):1219–1229

    Article  CAS  PubMed  Google Scholar 

  • USDA-ARS (United States Department of Agriculture-Agricultural Research Service) (2018) A national road map for integrated pest management. https://www.ars.usda.gov/ARSUserFiles/OPMP/IPM%20Road%20Map%20FINAL.pdf

  • Verheijen FG, Jones RJ, Rickson RJ, Smith CJ (2009) Tolerable versus actual soil erosion rates in Europe. Earth Sci Rev 94(1–4):23–38

    Article  Google Scholar 

  • Wang WZ, Yang BP, Feng XY, Cao ZY, Feng CL, Wang JG, Xiong GR, Shen LB, Zeng J, Zhao TT, Zhang SZ (2017) Development and characterization of transgenic sugarcane with insect resistance and herbicide tolerance. Front Plant Sci 8:1535. https://doi.org/10.3389/fpls.2017.01535

    Article  PubMed  PubMed Central  Google Scholar 

  • West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Cassidy ES, Johnston M, MacDonald GK, Ray DK, Siebert S (2014) Leverage points for improving global food security and the environment. Science 345(6194):325–328

    Article  CAS  PubMed  Google Scholar 

  • Wheeler T, Braum VJ (2013) Climate change impact on global food security. Science 341(6145):508–513

    Article  CAS  PubMed  Google Scholar 

  • Wu KM, Guo Y (2003) Influences of Bacillus thuringiensis Berliner cotton planting on population dynamics of the cotton aphid, Aphis gossypii glover, in northern China. Environ Entomol 32:312–318

    Article  Google Scholar 

  • Xue J, Liang G, Crickmore N, Li H, He K, Song F, Feng X, Huang D, Zhang J (2008) Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiol Lett 280:95–101

    Article  CAS  PubMed  Google Scholar 

  • Zalom FG, Bolda MP, Dara SK, Joseph S (2018) UC IPM pest management guidelines: strawberry (insects and mites). University of California Statewide IPM Program, Oakland, CA, publication number 3468

    Google Scholar 

Download references

Conflict of Interest

Authors declare no competing interest. All references have been duly cited and authors acknowledged.

Ethics approval and consent to participate.

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Adomako .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adomako, J. et al. (2022). Transgenic Plants and Its Role in Insect Control. In: Mandal, S.D., Ramkumar, G., Karthi, S., Jin, F. (eds) New and Future Development in Biopesticide Research: Biotechnological Exploration. Springer, Singapore. https://doi.org/10.1007/978-981-16-3989-0_8

Download citation

Publish with us

Policies and ethics