Skip to main content

Compressed Sensing MRI Reconstruction Using Convolutional Dictionary Learning and Laplacian Prior

  • Conference paper
  • First Online:
IOT with Smart Systems

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 251))

  • 1306 Accesses

Abstract

In compressed sensing magnetic resonance imaging (CS-MRI), applications of dictionary learning techniques have craved a decade long way with the development of methods like K-SVD, matching pursuits, etc. Dictionary learning methods are particularly useful in context of input signal adaptability. The data acquisition process of MRI is noisy in nature with various types of noise associated, like Rician, Gaussian, Rayleigh noise, motion artefacts like breathing artefacts, etc. In this context, training a dictionary directly with the noisy training samples may lead to an inefficient dictionary. Moreover, complexity and size of the constructed dictionary may be very big. This paper proposes a Laplacian sparse dictionary (LSD) technique for obtaining a concise and more representative dictionary which utilizes the concepts of manifold learning and double sparsity for MR image. This can be utilized to reconstruct an MR image using any of the existing compressed sensing methodology. The method along with online convolutional dictionary learning (CDL) has been demonstrated in this manuscript. Keeping in mind increased efficiency and reduced reconstruction time, the proposed method attempts to tackle the problem of MR image reconstruction. The results obtained from the proposed method have been compared with traditional CS-MRI methods using metrics—PSNR and SSIM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandilya, M., Nirmala, S.R.: Compressed Sensing trends in magnetic resonance imaging. Eng. Sci. Technol. Int. J. 20(4), 1342–1352 (2017)

    Google Scholar 

  2. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  3. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  4. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magnetic Reson. Medi. Off. J. Int. Soc. Magnetic Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  5. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  6. Qiaoling, W., Lin, N., Delong, H.: Compressed sensing based on nonsubsampled contourlet transform for image reconstruction. J. Univ. Sci. Technol. China 2 (2012)

    Google Scholar 

  7. Hao, W., Li, J., Qu, X., Dong, Z.: Fast iterative contourlet thresholding for compressed sensing MRI. Electron. Lett. 49(19), 1206–1208 (2013)

    Article  Google Scholar 

  8. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2010)

    Article  Google Scholar 

  9. Huang, Y., Paisley, J., Lin, Q., Ding, X., Fu, X., Zhang, X.-P.: Bayesian nonparametric dictionary learning for compressed sensing MRI. IEEE Trans. Image Process. 23(12), 5007–5019 (2014)

    Article  MathSciNet  Google Scholar 

  10. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  11. Ding, X., Paisley, J., Huang, Y., Chen, X., Huang, F., Zhang, X.-P.: Compressed sensing MRi with Bayesian dictionary learning. In: 2013 IEEE International Conference on Image Processing, pp. 2319–2323. IEEE (2013)

    Google Scholar 

  12. Song, Y., Zhu, Z., Lu, Y., Liu, Q., Zhao, J.: Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning. Magnetic Reson. Med. 71(3), 1285–1298 (2014)

    Article  Google Scholar 

  13. Li, F., Sheng, J., Zhang, S.-Y.: Laplacian sparse dictionary learning for image classification based on sparse representation. Front. Inform. Technol. Electron. Eng. 18(11), 1795–1805 (2017)

    Article  Google Scholar 

  14. Liu, J., Garcia-Cardona, C., Wohlberg, B., Yin, W.: Online convolutional dictionary learning. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1707–1711. IEEE (2017)

    Google Scholar 

  15. Liu, J., Garcia-Cardona, C., Wohlberg, B., Yin, W.: First-and second-order methods for online convolutional dictionary learning. SIAM J. Imaging Sci. 11(2), 1589–1628 (2018)

    Article  MathSciNet  Google Scholar 

  16. Tang, Y., Chen, Y., Xu, N., Jiang, A., Zhou, L.: Image denoising via sparse coding using eigenvectors of graph laplacian. Digital Signal Process. 50, 114–122 (2016)

    Article  Google Scholar 

  17. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer Science & Business Media, Berlin (2004)

    Google Scholar 

  18. Wohlberg, B.: ADMM penalty parameter selection by residual balancing (2017). arXiv preprint arXiv:1704.06209

  19. Wohlberg, B.: SPORCO: a python package for standard and convolutional sparse representations. In: Huff, K., Lippa, D., Niederhut, D., Pacer, M. (eds.) Proceedings of the 16th Python in Science Conference, pp. 1–8 (2017)

    Google Scholar 

  20. Knoll, F., Zbontar, J., Sriram, A., Muckley, M.J., Bruno, M., Defazio, A., Parente, M., Geras, K.J., Katsnelson, J., Chandarana, H., et al.: FastMRI: a publicly available raw k-space and dicom dataset of knee images for accelerated MR image reconstruction using machine learning. Radiol. Artif. Intell. 2(1), e190007 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sandilya, M., Nirmala, S.R. (2022). Compressed Sensing MRI Reconstruction Using Convolutional Dictionary Learning and Laplacian Prior. In: Senjyu, T., Mahalle, P., Perumal, T., Joshi, A. (eds) IOT with Smart Systems. Smart Innovation, Systems and Technologies, vol 251. Springer, Singapore. https://doi.org/10.1007/978-981-16-3945-6_65

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3945-6_65

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3944-9

  • Online ISBN: 978-981-16-3945-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics