Skip to main content

Plasma Applications in Microalgal Biotechnology

  • Chapter
  • First Online:
Agritech: Innovative Agriculture Using Microwaves and Plasmas

Abstract

Microalgae are very important organisms for the biosphere because they are at the basis of most of the food chains. Some taxa can also bloom and release dangerous toxins in the environment. Microalgae are also very promising for industrial applications in various sectors, including food, feed, pharmaceutical, wellness, energy, building, space, water treatment, biosensing, and biotechnology. The development of these applications requires in many cases the optimization of processing steps. Plasma technology has already been applied on biomolecules, proteins, enzymes, and peptides in the biomedical field, for the preparation of bioactive compounds and antifouling surfaces. Nowadays, the research prospective deals with the agriculture domain in the purpose of cleaning, sterilizing, or fertilizing the soil. However, plasma technology was also explored for enhancing bioadhesion and bioproduction without destroying microalgae. This chapter gives illustrations on this new application of plasma technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mimouni V, Ulmann L, Pasquet V, Mathieu M, Picot L, Bougaran G, Cadoret J-P, Morant-Manceau A, Schoefs B. The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr Pharm Biotechnol. 2012;13:2733–50.

    Article  CAS  PubMed  Google Scholar 

  2. Hopes A, Mock T. Evolution of microalgae and their adaptations in different marine ecosystems. eLS. 2015:1–9.

    Google Scholar 

  3. Schoefs B, van de Vijver B, Wetzel C, Ector L. From diatom species identification to ecological and biotechnological applications. Bot Lett. 2020;167:2–6.

    Article  Google Scholar 

  4. Masmoudi S, Nguyen-Deroche N, Caruso A, Ayadi H, Morant-Manceau A, Tremblin G, Bertrand M, Schoefs B. Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell - a review. Cryptogam Algol. 2013;34:185–223.

    Article  Google Scholar 

  5. Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cochlan WP, Landry MR, Constantinou J, Rollwagen G, Trasvina A, Kudela R. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature. 1996;383:495–501.

    Article  CAS  PubMed  Google Scholar 

  6. Parker MS, Mock T, Armbrust EV. Genomic insights into marine microalgae. Annu Rev Genet. 2008;42:619–45.

    Article  CAS  PubMed  Google Scholar 

  7. Heydarizadeh P, Veidl B, Huang B, Lukomska E, Wielgosz-Collin G, Couzinet-Mossion A, Bougaran G, Marchand J, Schoefs B. Carbon orientation in the diatom Phaeodactylum tricornutum: the effects of carbon limitation and photon flux density. Front Plant Sci. 2019;10:471.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moss R, Edmonds J, Hibbard K, Manning M, Rose S, Vuuren D, Carter T, Emori S, Kainuma M, Kram T, Meehl G, Mitchell J, Nakicenovic N, Riahi K, Smith S, Ronald S, Thomson A, Weyant J, Wilbanks T. The next generation of scenarios for climate change research and assessment. Nature. 2010;463:747–56.

    Article  CAS  PubMed  Google Scholar 

  9. Gordon D, Merz CR, Gurke S, Schoefs B. Bubble farming: scalable microcosms for diatom biofuel and the next green revolution. In: Seckbach J, Gordon R, editors. Diatoms: fundamentals & applications. Beverly, MA: Wiley-Scrivener; 2019.

    Google Scholar 

  10. Kirubakaran A, Jain S, Nema RK. A review on fuel cell technologies and power electronic interface. Renew Sust Energ Rev. 2009;13:2430–40.

    Article  CAS  Google Scholar 

  11. Verhelst S, Wallner T. Hydrogen-fueled internal combustion engines. Prog Energy Combust Sci. 2009;35:490–527.

    Article  CAS  Google Scholar 

  12. Ainas M, Hasnaoui S, Bouarab R, Abdi N, Drouiche N, Mameri N. Hydrogen production with the cyanobacterium Spirulina platensis. Int J Hydrog Energy. 2017;42:4902–7.

    Article  CAS  Google Scholar 

  13. Heydarizadeh P, Poirier I, Loizeau D, Ulmann L, Mimouni V, Schoefs B, Bertrand M. Plastids of marine phytoplankton produce bioactive pigments and lipids. Mar Drugs. 2013;11:3425–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scarsini M, Marchand J, Schoefs B. Carotenoid overproduction in microalgae: biochemical and genetic engineering. In: Jacob-Lopes E, Queiroz MI, Zepka LQ, editors. Pigments from microalgae handbook. Cham: Springer International Publishing; 2020.

    Google Scholar 

  15. Babaei A, Ranglová K, Malapascua JR, Masojídek J. The synergistic effect of selenium (selenite, –SeO32−) dose and irradiance intensity in Chlorella cultures. AMB Express. 2017;7:56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gojkovic Ž, Vílchez C, Torronteras R, Vigara J, Gómez-Jacinto V, Janzer N, Gómez-Ariza J-L, Márová I, Garbayo I. Effect of selenate on viability and selenomethionine accumulation of Chlorella sorokiniana grown in batch culture. Sci World J. 2014;2014:401265.

    Article  Google Scholar 

  17. Vinayak V, Manoylov KM, Gateau H, Blanckaert V, Herault J, Pencreac’h G, Marchand J, Gordon R, Schoefs B. Diatom milking: a review and new approaches. Mar Drugs. 2015;13:2629–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys. 2012;45:263001.

    Article  Google Scholar 

  19. Okada T, Chang C-Y, Kobayashi M, Shimizu T, Sasaki M, Kumagai S. Plasma-on-chip device for stable irradiation of cells cultured in media with a low-temperature atmospheric pressure plasma. Arch Biochem Biophys. 2016;605:11–8.

    Article  CAS  PubMed  Google Scholar 

  20. Kitazaki S, Koga K, Shiratani M, Hayashi N. Growth enhancement of radish sprouts induced by low pressure O2 radio frequency discharge plasma irradiation. Jpn J Appl Phys. 2012;51:01AE01.

    Article  Google Scholar 

  21. Straňák V, Špatenka P, Tichý M, Koller J, Kříha V, Scholtz V. Surfatron plasma-based sterilisation. Czechoslov J Phys. 2006;56:B843–7.

    Article  Google Scholar 

  22. Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res. 2010;106:155–77.

    Article  CAS  PubMed  Google Scholar 

  23. Rusanov VD, Fridman AA, Sholin GV. The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules. Soviet Phys Uspekhi. 1981;24:447–74.

    Article  Google Scholar 

  24. Laroussi M, Mendis DA, Rosenberg M. Plasma interaction with microbes. New J Phys. 2003;5:41.

    Article  Google Scholar 

  25. Gateau H, Blanckaert V, Veidl B, Burlet-Schiltz O, Pichereaux C, Gargaros A, Marchand J, Schoefs B. Application of pulsed electric fields for the biocompatible extraction of proteins from the microalga Haematococcus pluvialis. Bioelectrochemistry. 2021;137:107588.

    Article  CAS  PubMed  Google Scholar 

  26. Bachrach E, Lefèvre M. Contribution à l’étude du rôle de la silice chez les êtres vivants. Observ Biol Diat J Physiol Pathol Gén. 1929;27:241–9.

    Google Scholar 

  27. Martin-Jézéquel V, Hildebrand M, Brzezinski MA. Silicon metabolism in diatoms: implications for growth. J Phycol. 2000;36:821–40.

    Article  Google Scholar 

  28. Saxena A, Prakash K, Phogat S, Singh PK, Tiwari A. Inductively coupled plasma nanosilica based growth method for enhanced biomass production in marine diatom algae. Bioresour Technol. 2020:314.

    Google Scholar 

  29. Barros AI, Gonçalves AL, Simões M, Pires JCM. Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev. 2015;41:1489–500.

    Article  Google Scholar 

  30. Tarrade J, Darmanin T, Taffin de Givenchy E, Guittard F, Debarnot D, Poncin-Epaillard F. Texturation and superhydrophobicity of polyethylene terephthalate thanks to plasma technology. Appl Surf Sci. 2014;292:782–9.

    Article  CAS  Google Scholar 

  31. Almarashi JQM, El-Zohary SE, Ellabban MA, Abomohra AE-F. Enhancement of lipid production and energy recovery from the green microalga Chlorella vulgaris by inoculum pretreatment with low-dose cold atmospheric pressure plasma (CAPP). Energy Convers Manag. 2020;204:112314.

    Article  CAS  Google Scholar 

  32. Tang YZ, Lu XP, Laroussi M, Dobbs FC. Sublethal and killing effects of atmospheric-pressure, nonthermal plasma on eukaryotic microalgae in aqueous media. Plasma Process Polym. 2008;5:552–8.

    Article  CAS  Google Scholar 

  33. Fang M, Jin L, Zhang C, Tan Y, Jiang P, Ge N, Heping L, Xing X. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS One. 2013;8:e77046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choi JI, Yoon M, Joe M, Park H, Lee SG, Han SJ, Lee PC. Development of microalga Scenedesmus dimorphus mutant with higher lipid content by radiation breeding. Bioprocess Biosyst Eng. 2014;37:2437–44.

    Article  CAS  PubMed  Google Scholar 

  35. Cao S, Zhou X, Jin W, Wang F, Tu R, Han S, Chen H, Chen C, Xie GJ, Ma F. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresour Technol. 2017;244:1400–6.

    Article  CAS  PubMed  Google Scholar 

  36. Ban S, Lin W, Luo Z, Luo J. Improving hydrogen production of Chlamydomonas reinhardtii by reducing chlorophyll content via atmospheric and room temperature plasma. Bioresour Technol. 2019;275:425–9.

    Article  CAS  PubMed  Google Scholar 

  37. Liu B, Sun Z, Ma X, Yang B, Jiang Y, Wei D, Chen F. Mutation breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma. Int J Mol Sci. 2015;16:8201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schoefs B. Chlorophyll and carotenoid analysis in food products. A practical case-by-case view. Trends Anal Chem. 2003;22:335–9.

    Article  CAS  Google Scholar 

  39. Schoefs B. Determination of pigments in vegetables. J Chromatogr A. 2004;1054:217–26.

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen-Deroche TLNN, Caruso A, Le TT, Viet Bui T, Schoefs B, Tremblin G, Morant-Manceau A. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms. Sci World J. 2012;15:982957.

    Google Scholar 

  41. Roháček K, Bertrand M, Moreau B, Jacquette J, Caplat C, Morant-Manceau A, Schoefs B. Relaxation of the non-photochemical chlorophyll fluorescence quenching in diatoms: kinetics, components and mechanisms. Philos Trans R Soc B Biol Sci. 2014;369:20130241.

    Article  Google Scholar 

  42. Heydarizadeh P, Boureba W, Zahedi M, Huang B, Moreau B, Lukomska E, Couzinet-Mossion A, Wielgosz-Collin G, Martin-Jezequel V, Bougaran G, Marchand J, Schoefs B. Response of CO2-starved diatom Phaeodactylum tricornutum to light intensity transition. Philos Trans R Soc B Biol Sci. 2017;372:20160396.

    Article  Google Scholar 

  43. Wang M, Yang Y, Chen Z, Chen Y, Wen Y, Chen B. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae. Bioresour Technol. 2016;222:130–8.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, He M, Zou S, Fei C, Yan Y, Zheng S, Rajper AA, Wang C. Breeding of high biomass and lipid producing Desmodesmus sp. by ethylmethane sulfonate-induced mutation. Bioresour Technol. 2016;207:268–75.

    Article  CAS  PubMed  Google Scholar 

  45. Xu Z. Recent progress on atmospheric and room temperature plasma mutation breeding technology and its applications. CIESC J. 2014;65:2676–84.

    Google Scholar 

  46. Chen H, Bai F, Xiu Z. Oxidative stress induced in Saccharomyces cerevisiae exposed to dielectric barrier discharge plasma in air at atmospheric pressure. IEEE Trans Plasma Sci. 2010;38:1885–91.

    Article  CAS  Google Scholar 

  47. Li X, Liu R, Li J, Chang M, Liu Y, Jin Q, Wang X. Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments. Bioresour Technol. 2015;177:134–40.

    Article  CAS  PubMed  Google Scholar 

  48. Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT, LI HP, Gou ZX, Bao CY. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J Appl Microbiol. 2010;108:851–8.

    Article  CAS  PubMed  Google Scholar 

  49. Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C. Microalgal hydrogen production – A review. Bioresour Technol. 2017;243:1194–206.

    Article  CAS  PubMed  Google Scholar 

  50. Jenkins CL, Edwards GE, Andrews J. Reduction in chlorophyll content without a corresponding reduction in photosynthesis and carbon assimilation enzymes in yellow-green oil yellow mutants of maize. Photosynth Res. 1989;20:191–205.

    Article  CAS  PubMed  Google Scholar 

  51. Kosourov SN, Ghirardi ML, Seibert M. A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrog Energy. 2011;36:2044–8.

    Article  CAS  Google Scholar 

  52. Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kügler J, Ringsmuth AK, Kruse O, Hankamer B. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS One. 2013;8:e61375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Esquível MG, Amaro HM, Pinto TS, Fevereiro PS, Malcata FX. Efficient H2 production via Chlamydomonas reinhardtii. Trends Biotechnol. 2011;29:595–600.

    Article  PubMed  Google Scholar 

  54. Singh M, Shukla R, Das KC. Harvesting of microalgal biomass. In: BUX F, editor. Biotechnological applications of microalgae: biodiesel and value added products. Boca Raton: Taylor and Francis Group; 2013.

    Google Scholar 

  55. Pugazhendhi A, Shobana S, Bakonyi P, Nemestóthy N, Xia A, Banu JR, Kumar G. A review on chemical mechanism of microalgae flocculation via polymers. Biotechnol Rep. 2019;21:e00302.

    Article  Google Scholar 

  56. Lu Y, Shang Y, Huang X, Chen A, Yang Z, Jiang Y, Cai J, Gu W, Qian X, Yang H, Cheng R. Preparation of strong cationic chitosan-graft-polyacrylamide flocculants and their flocculating properties. Ind Eng Chem Res. 2011;50:7141–9.

    Article  CAS  Google Scholar 

  57. Thakur VK, Thakur MK. Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng. 2014;2:2637–52.

    Article  CAS  Google Scholar 

  58. Jia S, Yang Z, Ren K, Tian Z, Dong C, Ma R, Yu G, Yang W. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study. J Hazard Mater. 2016;317:593–601.

    Article  CAS  PubMed  Google Scholar 

  59. Wang J-P, Chen Y-Z, Ge X-W, Yu H-Q. Gamma radiation-induced grafting of a cationic monomer onto chitosan as a flocculant. Chemosphere. 2007;66:1752–7.

    Article  CAS  PubMed  Google Scholar 

  60. Wang J-P, Chen Y-Z, Zhang S-J, Yu H-Q. A chitosan-based flocculant prepared with gamma-irradiation-induced grafting. Bioresour Technol. 2008;99:3397–402.

    Article  CAS  PubMed  Google Scholar 

  61. Yu J, Gege Y, Yuanpei P, Quanfang L, Wu Y, Jinzhang G. Poly (acrylamide-co-acrylic acid) hydrogel induced by glow-discharge electrolysis plasma and its adsorption properties for cationic dyes. Plasma Sci Technol. 2014;16:767.

    Article  CAS  Google Scholar 

  62. Sun YJ, Zhu CY, Sun WQ, Xu YH, Xiao XF, Zheng HL, Wu HF, Liu CY. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water. Carbohydr Polym. 2017;164:222–32.

    Article  CAS  PubMed  Google Scholar 

  63. Sun YJ, Ren MJ, Sun WQ, Xiao XF, Xu YH, Zheng HL, Wu HF, Liu ZY, Zhu H. Plasma-induced synthesis of chitosan-g-polyacrylamide and its flocculation performance for algae removal. Environ Technol. 2019;40:954–68.

    Article  CAS  PubMed  Google Scholar 

  64. Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14:557–77.

    Article  CAS  Google Scholar 

  65. Lin KC, Lin YC, Hsiao YH. Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production. Energy. 2014;64:567–74.

    Article  CAS  Google Scholar 

  66. Paerl HW, Paul VJ. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 2012;46:1349–63.

    Article  CAS  PubMed  Google Scholar 

  67. Zamyadi A, Mcquaid N, Dorner S, Bird D, Burch M, Baker P, Hobson P, Prevost M. Cyanobacterial detection using in vivo fluorescence probes: managing interferences for improved decision-making. J Am Water Works Assoc. 2012;104:E466–79.

    Article  Google Scholar 

  68. Lawton LA, Robertson PKJ, Robertson RF, Bruce FG. The destruction of 2-methylisoborneol and geosmin using titanium dioxide photocatalysis. Appl Catal B Environ. 2003;44:9–13.

    Article  CAS  Google Scholar 

  69. Rashid N, Rehman SU, Han J-I. Rapid harvesting of freshwater microalgae using chitosan. Process Biochem. 2013;48:1107–10.

    Article  CAS  Google Scholar 

  70. Chen X, Yang X, Yang L, Xiao B, Wu X, Wang J, Wan H. An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments. Water Res. 2010;44:1884–92.

    Article  CAS  PubMed  Google Scholar 

  71. Lebout H. Fifty years of ozonation at nice. Ozone Chemistry and Technology. Washington, DC: American Chemical Society; 1959.

    Google Scholar 

  72. Mizukoshi Y, Matsuda Y, Yamanaka S, Ikeno T, Haraguchi K, Goda N, Nishimura Y, Yamamoto K. Deactivation of algae by plasma generated in seawater flow. Chem Lett. 2018;47:116–8.

    Article  CAS  Google Scholar 

  73. Kim HJ, Nam GS, Jang JS, Won CH, Kim HW. Cold plasma treatment for efficient control over algal bloom products in surface water. Water. 2019;11:1513.

    Article  Google Scholar 

  74. Nisol B, Watson S, Leblanc Y, Moradinejad S, Wertheimer MR, Zamyadi A. Cold plasma oxidation of harmful algae and associated metabolite BMAA toxin in aqueous suspension. Plasma Processes Polymers. 2019;16:e1800137.

    Article  Google Scholar 

  75. Zhang H, Huang Q, Ke Z, Yang L, Wang X, Yu Z. Degradation of microcystin-LR in water by glow discharge plasma oxidation at the gas–solution interface and its safety evaluation. Water Res. 2012;46:6554–62.

    Article  CAS  PubMed  Google Scholar 

  76. Jo JO, Kim SD, Lee HJ, Mok YS. Decomposition of taste-and-odor compounds produced by cyanobacteria algae using atmospheric pressure plasma created inside a porous hydrophobic ceramic tube. Chem Eng J. 2014;247:291–301.

    Article  CAS  Google Scholar 

  77. Achyuthan KE, Harper JC, Manginell RP, Moorman MW. Volatile metabolites emission by in vivo microalgae-an overlooked opportunity? Meta. 2017;7:39.

    Google Scholar 

  78. Li T, Li H, Li C. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. Chemosphere. 2020;250:126338.

    Article  CAS  PubMed  Google Scholar 

  79. Tsai WT. Fate of chloromethanes in the atmospheric environment: implications for human health, ozone formation and depletion, and global warming impacts. Toxics. 2017;5:23.

    Article  PubMed Central  Google Scholar 

  80. Li C, Zhao Y, Song H, Li H. A review on recent advances in catalytic combustion of chlorinated volatile organic compounds. J Chem Technol Biotechnol. 2020;95:2069–82.

    Article  CAS  Google Scholar 

  81. Ye J-X, Lin T-H, Hu J-T, Poudel R, Cheng Z-W, Zhang S-H, Chen J-M, Chen D-Z. Enhancing chlorobenzene biodegradation by Delftia tsuruhatensis using a water-silicone oil biphasic system. Int J Environ Res Public Health. 2019;16:1629.

    Article  CAS  PubMed Central  Google Scholar 

  82. Schiavon M, Torretta V, Casazza A, Ragazzi M. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: A review. Water Air Soil Pollut. 2017;228:388.

    Article  Google Scholar 

  83. Jiang L, Li S, Cheng Z, Chen J, Nie G. Treatment of 1,2-dichloroethane and n-hexane in a combined system of non-thermal plasma catalysis reactor coupled with a biotrickling filter. J Chem Technol Biotechnol. 2018;93:127–37.

    Article  CAS  Google Scholar 

  84. Lin Z, LI J, Luan Y, Dai W. Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicol Environ Saf. 2020;190:110089.

    Article  CAS  PubMed  Google Scholar 

  85. Mahan CA, Majidi V, Holcombe JA. Evaluation of the metal uptake of several algae strains in a multicomponent matrix utilizing coupled plasma emission spectrometry. Anal Chem. 1989;61:624–7.

    Article  CAS  PubMed  Google Scholar 

  86. Mitchell PG, Greene B, Sneddon J. Direct determination of mercury in solid algal cells by direct-current argon-plasma emission-spectrometry with sample introduction by electrothermal vaporization. Mikrochim Acta. 1986;1:249–58.

    Article  CAS  Google Scholar 

  87. Greene B, Mitchell PG, Sneddon J. Direct determination of gold in solid algal cells by direct-current argon plasma emission-spectrometry with introduction by electrothermal atomization. Spectrosc Lett. 1986;19:101–11.

    Article  CAS  Google Scholar 

  88. Bertrand M, Schoefs B, Siffel P, Rohacek K, Molnar I. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum. FEBS Lett. 2001;508:153–6.

    Article  CAS  PubMed  Google Scholar 

  89. Bertrand M, Weber G, Schoefs B. Metal determination and quantification in biological material using particle-induced X-ray emission. TrAC Trends Anal Chem. 2003;22:254–62.

    Article  CAS  Google Scholar 

  90. Cerchiaro G, Manieri TM, Bertuchi FR. Analytical methods for copper, zinc and iron quantification in mammalian cells. Metallomics. 2013;5:1336–45.

    Article  CAS  PubMed  Google Scholar 

  91. Bednarik A, Kuta J, Vu DL, Ranglova K, Hrouzek P, Kanicky V, Preisler J. Thin-layer chromatography combined with diode laser thermal vaporization inductively coupled plasma mass spectrometry for the determination of selenomethionine and selenocysteine in algae and yeast. J Chromatogr A. 2018;1533:199–207.

    Article  CAS  PubMed  Google Scholar 

  92. Li JX, Sun CJ, Zheng L, Jiang FH, Yin XF, Chen JH, Wang XR. Determination of lead species in algae by capillary electrophoresis-inductively coupled plasma-mass spectrometry. Chin J Anal Chem. 2016;44:1659–64.

    Article  CAS  Google Scholar 

  93. Shen X, Zhang HT, He XL, Shi HL, Stephan C, Jiang H, Wan CH, Eichholz T. Evaluating the treatment effectiveness of copper-based algaecides on toxic algae Microcystis aeruginosa using single cell-inductively coupled plasma-mass spectrometry. Anal Bioanal Chem. 2019;411:5531–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Salgado SG, Nieto MAQ, Simon MMB. Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry. J Chromatogr A. 2006;1129:54–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Schoefs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, A.D., Scarsini, M., Poncin-Epaillard, F., Noel, O., Marchand, J., Schoefs, B. (2022). Plasma Applications in Microalgal Biotechnology. In: Horikoshi, S., Brodie, G., Takaki, K., Serpone, N. (eds) Agritech: Innovative Agriculture Using Microwaves and Plasmas. Springer, Singapore. https://doi.org/10.1007/978-981-16-3891-6_17

Download citation

Publish with us

Policies and ethics