Skip to main content

Enzyme Activity Control and Protein Conformational Change

  • Chapter
  • First Online:
Agritech: Innovative Agriculture Using Microwaves and Plasmas

Abstract

Controlling the enzyme activity shows potential for significant contributions to the pre−/postharvest food industry. In this chapter, the physicochemical factors of plasma mainly in terms of reactive species, taking into account electric fields, and the effects of each element on enzyme activity are discussed. The mechanism will be discussed from multiple angles, centring on conformational changes in proteins. Appropriate plasma control based on quantitative studies on the enzymatic activity and protein conformation of each plasma-induced factor has the potential to greatly contribute to innovative agricultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dudak FC, Kousal J, Seker UÖŞ, Boyacı İH, Choukourov A, Biederman H. Proceedings of 28th ICPIG, July 15–20, 2007, Prague, Czech Republic; 2007

    Google Scholar 

  2. Li H-P, Wang L-Y, Li G, Jin L-H, Le P-S, Zhao H-X, Xing X-H, Bao C-Y. Manipulation of Lipase Activity by the Helium Radio-Frequency, Atmospheric-Pressure Glow Discharge Plasma Jet. Plasma Process Polym. 2011;2011(8):224–9.

    Google Scholar 

  3. Takai E, et al. Protein Inactivation by Low-temperature Atmospheric Pressure Plasma in Aqueous Solution. Plasma Process Polym. 2012;2012(9):77–82.

    Google Scholar 

  4. Pankaj SK, et al. Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov Food Sci Emerg Technol. 2013;19(2013):153–7.

    CAS  Google Scholar 

  5. Surowsky B, Fischer A, Schlueter O, Knorr D. Cold plasma effects on enzyme activity in a model food system. Innov Food Sci Emerg Technol. 2013;19(2013):146–52.

    CAS  Google Scholar 

  6. Tappi S, Berardinelli A, Ragni L, Rosa MD, Guarnieri A, Rocculi P. Atmospheric gas plasma treatment of fresh-cut apples. Innov Food Sci Emerg Technol. 2014;21(2014):114–22.

    CAS  Google Scholar 

  7. Chen HH, Hung CL, Lin SY, Liou GJ. Effect of Low-Pressure Plasma Exposure on the Storage Characteristics of Brown Rice. Food Bioprocess Technol. 2014;8:471–7.

    Google Scholar 

  8. Zhang H, Xu Z, Shen J, Li X, Ding L, Ma J, Lan Y, Xia W, Cheng C, Sun Q, Zhang Z, Chu PK. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasmaon Lactate Dehydrogenase (LDH) Enzyme. Sci Rep. 2015;5:10031. https://doi.org/10.1038/srep10031.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tappi S, Gozzi G, Vannini L, Berardinelli A, Romani S, Ragni L, Rocculi P. Cold plasma treatment for fresh-cut melon stabilization. Innov Food Sci Emerg Technol. 2016;33(2016):225–33.

    CAS  Google Scholar 

  10. Lee K, Kim H, Woo K, Jo C, Kim J, Kim S, Park H, Oh S, Kim W. Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. Food Sci Technol. 2016;73:442–7. https://doi.org/10.1016/j.lwt.2016.06.055.

    Article  CAS  Google Scholar 

  11. Segat A, Misra NN, Cullen PJ, Innocente N. Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food Bioprod Process. 2016;98:181–8.

    CAS  Google Scholar 

  12. Xu Y, Tian Y, Ma R, Liu Q, Zhang J. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 2016;197(2016):436–44.

    CAS  PubMed  Google Scholar 

  13. Khani MR, Shokri B, Khajeh K. Studying the performance of dielectric barrier discharge and gliding arc plasma reactors in tomato peroxidase inactivation. J Food Eng. 2017;197:107e112.

    Google Scholar 

  14. Choi S, Attri P, Lee I, Oh J, Yun J-H, Park JH, Choi EH, Lee W. Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet. Sci Rep. 2017;7:1027. https://doi.org/10.1038/s41598-017-01030-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tolouie H, Mohammadifar MA, Ghomi H, Yaghoubi AS, Hashemi M. The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innov Food Sci Emerg Technol. 2018;47(2018):346–52.

    CAS  Google Scholar 

  16. Fanelli F, Fracassi F, Lapenna A, Angarano V, Palazzo G, Mallardi A. Atmospheric Pressure Cold Plasma: A Friendly Environment for Dry Enzymes. Adv Mater Interf. 2018;2018(5):1801373.

    Google Scholar 

  17. Zhang H, Ma J, Shen J, Lan Y, Ding L, Qian S, Cheng C, Xia W, Chu PK. Comparison of the Effects Induced by Plasma Generated Reactive Species and H2O2 on Lactate Dehydrogenase (LDH) Enzyme. IEEE Trans Plasma Sci. 2018;46(8)

    Google Scholar 

  18. Farasat M, Arjmand S, Ranaei Siadat SO, Sefidbakht Y, Ghomi H. The effect of non-thermal atmospheric plasma on the production and activity of recombinant phytase enzyme. Sci Rep. 2018;8:16647. https://doi.org/10.1038/s41598-018-34239-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chutia H, Kalita D, Mahanta CL, Ojah N, Choudhury AJ. Kinetics of inactivation of peroxidase and polyphenol oxidase in tender coconut water by dielectric barrier discharge plasma. LWT Food Sci Technol. 2019;101:625–9.

    CAS  Google Scholar 

  20. Umair M, Jabbar S, Nasiru MM, Sultana T, Senan AM, Awad FN, Hong Z, Zhang J. Exploring the potential of high-voltage electric field cold plasma (HVCP) using a dielectric barrier discharge (DBD) as a plasma source on the quality parameters of carrot juice. Antibiotics. 2019;8:235.

    CAS  PubMed Central  Google Scholar 

  21. Tappi S, Tappi S, Ragni L, Tylewicz U, Romani S, Ramazzina I, Rocculi P. Browning response of fresh-cut apples of different cultivars to cold gas plasma treatment. Innov Food Sci Emerg Technol. 2019;53:56–62.

    CAS  Google Scholar 

  22. Kang JH, Roh SH, Min SC. Inactivation of Potato Polyphenol Oxidase Using Microwave Cold Plasma Treatment. J Food Sci. 2019;84(5)

    Google Scholar 

  23. Zouelm F, Abhari K, Hosseini H, Khani M. The Effects of Cold Plasma Application on Quality and Chemical Spoilage of Pacific White Shrimp (Litopenaeus vannamei) during Refrigerated Storage. J Aquatic Food Prod Technol. 2019;28(6)

    Google Scholar 

  24. Muhammad AI, Li Y, Liao X, Liu D, Ye X, Chen S, Hu Y, Wang J, Ding T. Effect of dielectric barrier discharge plasma on background microflora and physicochemical properties of tiger nut milk. Food Control. 2019;96:119–27.

    CAS  Google Scholar 

  25. Han Y-X, Cheng J-H, Sun D-W. Changes in activity, structure and morphology of horseradish peroxidase induced by cold plasma. Food Chem. 2019;301:125240.

    CAS  PubMed  Google Scholar 

  26. Wang T, Wu Y, Li Z, Sha X. Potential impact of active substances in non-thermal discharge plasma process on microbial community structures and enzymatic activities in uncontaminated soil. J Hazard Mater. 2020;393:122489.

    CAS  PubMed  Google Scholar 

  27. Farias TRB, Rodrigues S, Fernandes FAN. Effect of dielectric barrier discharge plasma excitation frequency on the enzymatic activity, antioxidant capacity and phenolic content of apple cubes and apple juice. Food Res Int. 2020;136:109617.

    CAS  PubMed  Google Scholar 

  28. Batista JDF, Dantas AM, dos Santos FJV, Madruga MS, Fernandes FAN, Rodrigues S, Borges GSC. Effects of cold plasma on avocado pulp (Persea americana Mill.): Chemical characteristics and bioactive compounds. J Food Process Preserv. 2020:e15179.

    Google Scholar 

  29. Lapenna A, Fanelli F, Fracassi F, Armenise V, Angarano V, Palazzo G, Mallardi A. Direct exposure of dry enzymes to atmospheric pressure non-equilibrium plasmas: The case of tyrosinase. Materials. 2020;2020(13):2181. https://doi.org/10.3390/ma13092181.

    Article  CAS  Google Scholar 

  30. Koddy JK, Miao W, Hatab S, Tang L, Xu H, Nyaisaba BM, Chen M, Deng S. Understanding the role of atmospheric cold plasma (ACP) in maintaining the quality of hairtail (Trichiurus Lepturus). Food Chem. 2021;343:128418.

    CAS  PubMed  Google Scholar 

  31. Seo SY, Sharma VK, Sharma N. Mushroom tyrosinase: recent prospects. J Agric Food Chem. 2003;51:2837–53.

    CAS  PubMed  Google Scholar 

  32. Baltes W. Lebensmittelchemie. 5th ed. Berlin: Springer; 2000.

    Google Scholar 

  33. Boonsiri K, Ketsa S, van Doorn WG. Seed browning of hot peppers during low temperature storage. Postharvest Biol Technol. 2007;45:358–65.

    CAS  Google Scholar 

  34. Valentines MC, Vilaplana R, Torres R, Usall J, Larrigaudière C. Specific roles of enzymatic browning and lignification in apple disease resistance. Postharvest Biol Technol. 2005;36:227–34.

    CAS  Google Scholar 

  35. Hendrickx M, Ludikhuyze L, Van den Broeck I, Weemaes C. Effects of high pressure on enzymes related to food quality. Trends Food Sci Technol. 1998;9:197–203.

    CAS  Google Scholar 

  36. Vámos-Vigyázó L. Prevention of enzymatic browning in fruits and vegetables. A review of principles and practice. In: Lee CY, Whitaker JR, editors. Enzymatic browning and its prevention. Washington, DC: American Chemical Society; 1995. p. 49–62.

    Google Scholar 

  37. Gardner HW. Biological roles and biochemistry of the lipoxygenase pathway. HortScience. 1995;30:2.

    Google Scholar 

  38. Kausch KD, Handa AK. Molecular Cloning of a Ripening-Specific Lipoxygenase and Its Expression during Wild-Type and Mutant Tomato Fruit Development. Plant Physiol. 1997:11. https://doi.org/10.1104/pp.113.4.1041.

  39. Rogiers SY, Mohan Kumar GN, Knowles NR. Maturation and Ripening of Fruit of Amelanchier alnifolia Nutt. are Accompanied by Increasing Oxidative Stress. Ann Bot. 1998;81(2):203–11. https://doi.org/10.1006/anbo.1997.0543.

    Article  CAS  Google Scholar 

  40. Chrastil J. Influence of storage on enzymes in rice grains. J Agric Food Chem. 1990;38(5):1198–202. https://doi.org/10.1021/jf00095a008.

    Article  CAS  Google Scholar 

  41. Chrastil J. Enzyme activities in preharvest rice grains. J Agric Food Chem. 1993;41(12):2245–8. https://doi.org/10.1021/jf00036a004.

    Article  CAS  Google Scholar 

  42. Wang YJ, Wang L, Shephard D, Wang F, Patindol J. Properties and Structures of Flours and Starches from Whole, Broken, and Yellowed Rice Kernels in a Model Study. Cereal Chem J. 2002;79(3):383–6. https://doi.org/10.1094/CCHEM.2002.79.3.383.

    Article  CAS  Google Scholar 

  43. Suzuki Y, Ise K, Li C, Honda I, Iwai Y, Matsukura U. Volatile components in stored rice [Oryza sativa (L.)] of varieties with and without lipoxygenase-3 in seeds. J Agric Food Chem. 1999;47(3):1119–24. https://doi.org/10.1021/jf980967a.

    Article  CAS  PubMed  Google Scholar 

  44. Lee KH, Kim HJ, Woo KS, Jo C, Kim JK, Kim SH, Park HY, Oh SK, Kim WH. Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT Food Sci Technol. 2016;73:442e447.

    Google Scholar 

  45. Ertugay M, et al. Effect of pulsed electric field treatment on polyphenol oxidase, total phenolic compounds, and microbial growth of apple juice. Turk J Agric For. 2013;37:772.

    CAS  Google Scholar 

  46. Okumura T, Yaegashi T, Fujiwara T, Takahashi K, Takaki K, Kudo T. Influence of pulsed electric field on enzymes, bacteria and volatile flavor compounds of unpasteurized sake. Plasma Sci Technol. 2018;20:4.

    Google Scholar 

  47. Ohshima T, Tamura T, Sato M. Influence of pulsed electric field on various enzyme activities. J Electrost. 2007;65:156.

    CAS  Google Scholar 

  48. Zhao W, Yang R. The effect of pulsed electric fields on the inactivation and structure of lysozyme. Food Chem. 2008;110:334.

    CAS  PubMed  Google Scholar 

  49. Hayashi N, Yagyu Y. Treatment of protein using oxygen plasma produced by RF discharge. J Plasma Fusion Res. 2008;33(3):791–4.

    CAS  Google Scholar 

  50. Attri P, Venkatesu P, Kaushik N, Han YG, Nam CJ, Choi EH, Kim KS. Effects of atmospheric-pressure non-thermal plasma jets on enzyme solutions. J Korean Phys Soc. 2012;60(6):959–64.

    CAS  Google Scholar 

  51. Czarnik-Matusewicz B, Pilorz S. 2DCOS and MCR-ALS as a combined tool of analysis of β-lactoglobulin CD spectra. J Mol Struct. 2006;799:211.

    CAS  Google Scholar 

  52. Manavalan P, Johnson WC Jr. Sensitivity of circular dichroism to protein tertiary structure class. Nature. 1983;305:831.

    CAS  Google Scholar 

  53. Takai E. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. J Phys D Appl Phys. 2014;47:285403.

    Google Scholar 

  54. Attri P, Kumar N, Park JH, Yadav DK, Choi S, Uhm HS, Kim IT, Choi EH, Lee W. Influence of reactive species on the modification of biomolecules generated from the soft plasma. Sci Rep. 2015;5:8221. https://doi.org/10.1038/srep08221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bekard I, Dunstan DE. Electric field induced changes in protein conformation. Soft Matter. 2014;10(3):431–7.

    CAS  PubMed  Google Scholar 

  56. Okumura T, Yamada K, Yaegashi T, Takahashi K, Syuto B, Takaki K. External AC electric field-induced conformational change in bovine serum albumin. IEEE Trans Plasma Sci. 2017;45(3):489–94.

    CAS  Google Scholar 

  57. De D. Electric field-driven conformational changes in the elastin protein. Phys Chem Chem Phys. 2021;23:4195.

    CAS  PubMed  Google Scholar 

  58. Ojeda-May P, Garcia ME. Electric Field-Driven Disruption of a Native β-Sheet Protein Conformation and Generation of a Helix-Structure. Biophys J. 2010;99:595–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang Z, You L, Dou W, Sun T, Xu P. Effects of an Electric Field on the Conformational Transition of the Protein: A Molecular Dynamics Simulation Study. Polymers. 2019;2019(11):282. https://doi.org/10.3390/polym11020282.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamasa Okumura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okumura, T. (2022). Enzyme Activity Control and Protein Conformational Change. In: Horikoshi, S., Brodie, G., Takaki, K., Serpone, N. (eds) Agritech: Innovative Agriculture Using Microwaves and Plasmas. Springer, Singapore. https://doi.org/10.1007/978-981-16-3891-6_16

Download citation

Publish with us

Policies and ethics