Skip to main content

Fungal Mycelium-Based Biocomposites: An Emerging Source of Renewable Materials

  • Chapter
  • First Online:
Microbial Technology for Sustainable Environment

Abstract

Fungi are efficiently used to produce a variety of medicinal compounds, functional foods, and environmentally sustainable raw materials for a wide range of consumer goods due to their distinctive biological properties. Mycelium, the vegetative structure of filamentous fungi, acts as a natural, self-assembling adhesive as it grows, binding the fragments of organic substrates, leading to the production of fungal mycelium-based biocomposites (MBCs). These biocomposites are biodegradable alternatives for many synthetic polymers, such as polystyrene, and are therefore considered as a widely applicable, emerging class of renewable materials. MBCs are excellent examples of circular materials, ensuring a cradle-to-cradle (C2C) design, in which biodegradable products can be returned to the ecosystem after its use. Diverse species of fungi can be used to produce MBCs together with a range of agricultural and other plant-based lignocellulosic substrates. Several business start-ups, by innovative investors, are globally leading in mycelium-based product manufacturing. MBCs, including both mycelium-based foams (MBFs) and mycelium-based sandwich composites (MBSCs), are known for their potential industrial applications, such as packaging materials, architectural design, construction, fashion, and automotive insulation products. Both the mycelium binder and substrate type have an immense impact on the significant material properties of MBCs, including their hydrophobicity, acoustic nature, thermal insulation, and fire resistance. This chapter summarizes the diversity of the fungi used to produce MBCs as well as their potential feeding substrates, manufacturing process, physical and mechanical properties, innovative applications, and future directions for related research endeavours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhijith R, Ashok A, Rejeesh CR (2018) Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater Today Proc 5(1):2139–2145. https://doi.org/10.1016/j.matpr.2017.09.211

    Article  CAS  Google Scholar 

  • Agustina W, Aditiawati P, Kusumah SS, Dungani R (2019) Physical and mechanical properties of composite boards from the mixture of palm sugar fiber and cassava bagasse using mycelium of Ganoderma lucidum as a biological adhesive. In: The eighth international symposium for sustainable Humanosphere, IOP conference series: earth and environmental science, Medan, Indonesia, 18–19 Oct 2018, vol 374. IOP Publishing, p 012012

    Google Scholar 

  • Appels FVW, Wösten HAB (2020) Mycelium materials. In: Reference module in life sciences. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-809633-8.21131-X

    Chapter  Google Scholar 

  • Appels FV, Dijksterhuis J, Lukasiewicz CE, Jansen KM, Wösten HA, Krijgsheld P (2018) Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci Rep 8(1):1–7. https://doi.org/10.1038/s41598-018-23171-2

    Article  CAS  Google Scholar 

  • Appels FV, Camere S, Montalti M, Karana E, Jansen KM, Dijksterhuis J, Krijgsheld P, Wösten HA (2019) Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Mater Des 161:64–71. https://doi.org/10.1016/j.matdes.2018.11.027

    Article  CAS  Google Scholar 

  • Arifin YH, Yusuf Y (2013) Mycelium fibers as new resource for environmental sustainability. Proc Eng 53:504–508. https://doi.org/10.1016/j.proeng.2013.02.065

    Article  CAS  Google Scholar 

  • Attias N, Danai O, Ezov N, Tarazi E, Grobman YJ (2017) Developing novel applications of mycelium based bio-composite materials for design and architecture. In: Proceedings of building with biobased materials: best practice and performance specification, 6–7 September 2017, pp 76–77

    Google Scholar 

  • Attias N, Danai O, Tarazi E, Pereman I, Grobman YJ (2019) Implementing bio-design tools to develop mycelium-based products. Des J 22:1647–1657. https://doi.org/10.1080/14606925.2019.1594997

    Article  Google Scholar 

  • Attias N, Danai O, Abitbol T, Tarazi E, Ezov N, Pereman I, Grobman YJ (2020) Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis. J Clean Prod 246:119037. https://doi.org/10.1016/j.jclepro.2019.119037

    Article  Google Scholar 

  • Bathurst RJ, Keshavarz A, Zarnani S, Take WA (2007) A simple displacement model for response analysis of EPS geofoam seismic buffers. Soil Dyn Earthq Eng 27(4):344–353. https://doi.org/10.1016/j.soildyn.2006.07.004

    Article  Google Scholar 

  • Bayer E, McIntyre G, Swersey BL (2008) Method for producing grown materials and products made thereby. US Patent 12/001,556, 19 Jun 2008

    Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98(3):426–438. https://doi.org/10.3732/ajb.1000298

    Article  PubMed  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28(8):799–808. https://doi.org/10.1002/bies.20441

    Article  PubMed  Google Scholar 

  • Bruscato C, Malvessi E, Brandalise RN, Camassola M (2019) High performance of macrofungi in the production of mycelium-based biofoams using sawdust—sustainable technology for waste reduction. J Clean Prod 234:225–232. https://doi.org/10.1016/j.jclepro.2019.06.150

    Article  CAS  Google Scholar 

  • Butu A, Rodino S, Miu B, Butu M (2020) Mycelium-based material for the ecodesign of bioeconomy. Dig J Nanomater Biostruct 15(4):1129–1140

    Google Scholar 

  • Cairns TC, Zheng X, Zheng P, Sun J, Meyer V (2019) Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. Biotechnol Biofuels 12(1):77. https://doi.org/10.1186/s13068-019-1400-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P (2019) Fungi as source for new bio-based materials: a patent review. Fungal Biol Biotechnol 6(1):1–10. https://doi.org/10.1186/s40694-019-0080-y

    Article  Google Scholar 

  • Elsacker E, Vandelook S, Brancart J, Peeters E, De Laet L (2019) Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One 14(7):e0213954. https://doi.org/10.1371/journal.pone.0213954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghazvinian A, Farrokhsiar P, Vieira F, Pecchia J, Gursoy B (2019) Mycelium-based bio-composites for architecture: assessing the effects of cultivation factors on compressive strength. In: Sousa JP, Henriques GC, Xavier JP (eds) The eCAADe and SIGraDi conference. University of Porto, Portugal, pp 11–13

    Google Scholar 

  • Girometta C, Picco AM, Baiguera RM, Dondi D, Babbini S, Cartabia M, Pellegrini M, Savino E (2019) Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability 11(1):281. https://doi.org/10.3390/su11010281

    Article  CAS  Google Scholar 

  • Goncu-Berk G (2019) Smart textiles and clothing: an opportunity or a threat for sustainability. In: Proceedings of the textile intersections, London, 12–14 Sept 2019

    Google Scholar 

  • Hammon D (2020) IKEA commits to biodegradable mushroom packaging. Yahoo News. news.yahoo.com. Accessed 30 Jan 2021

  • Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia-Guerrero JA, Athanassiou A (2017) Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep 7(1):1–11. https://doi.org/10.1038/srep41292

    Article  CAS  Google Scholar 

  • Heisel F, Schlesier K, Lee J, Rippmann M, Saeidi N, Javadian A, Nugroho AR, Hebel D, Block P (2017) Design of a load-bearing mycelium structure through informed structural engineering. In: World congress on sustainable technologies (WCST-2017), University of Cambridge, 11–14 December 2017, pp 45–49

    Google Scholar 

  • Holt GA, Mcintyre G, Flagg D, Bayer E, Wanjura JD, Pelletier MG (2012) Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts. J Biobaased Mater Bioenergy 6(4):431–439. https://doi.org/10.1166/jbmb.2012.1241

    Article  CAS  Google Scholar 

  • Hyde KD, Xu J, Rapior S et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136. https://doi.org/10.1007/s13225-019-00430-9

    Article  Google Scholar 

  • Iordache O, Perdum E, Mitran EC, Chivu A, Dumitrescu I, Irina-Mariana MF (2018) Novel myco-composite material obtained with Fusarium oxysporum. In: International conference on advanced materials and systems (ICAMS), Bucharest, 18–20 Oct 2018, pp 111–116

    Google Scholar 

  • IUPAC (1997) Compendium of chemical terminology, 2nd edn (the “Gold Book”). Compiled by McNaught AD, Wilkinson A. Blackwell Scientific Publications, Oxford. Online version (2019-) created by Chalk SJ. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook

  • Jastrzebski ZD (1959) Nature and properties of engineering materials, International edn. Wiley, New York

    Google Scholar 

  • Jiang L, Walczyk D, Mooney L, Putney S (2013) Manufacturing of mycelium-based biocomposites. In: Proceedings of the international SAMPE technical conference, pp 1944–1955

    Google Scholar 

  • Jiang L, Walczyk D, McIntyre G (2014a) A new process for manufacturing biocomposite laminate and sandwich parts using mycelium as a binder. ASC 2014 proceedings, pp 8–10

    Google Scholar 

  • Jiang L, Walczyk DF, McIntyre G (2014b) Vacuum infusion of mycelium-bound biocomposite preforms with natural resins. In: CAMX conference proceedings, Orlando, 13–16 Oct 2014, pp 13–16

    Google Scholar 

  • Jiang L, Walczyk D, McIntyre G, Chan WK (2016) Cost modeling and optimization of a manufacturing system for mycelium-based biocomposite parts. J Manuf Syst 41:8–20. https://doi.org/10.1016/j.jmsy.2016.07.004

    Article  Google Scholar 

  • Jiang L, Walczyk D, McIntyre G, Bucinell R, Tudryn G (2017a) Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. J Manuf Process 28:50–59. https://doi.org/10.1016/j.jmapro.2017.04.029

    Article  Google Scholar 

  • Jiang L, Walczyk D, McIntyre G (2017b) A new approach to manufacturing biocomposite sandwich structures: investigation of preform shell behavior. J Manuf Sci Eng 139(2):021014. https://doi.org/10.1115/1.4034278

    Article  Google Scholar 

  • Jiang L, Walczyk D, McIntyre G, Bucinell R, Li B (2019) Bioresin infused then cured mycelium-based sandwich-structure biocomposites: resin transfer molding (RTM) process, flexural properties, and simulation. J Clean Prod 207:123–135. https://doi.org/10.1016/j.jclepro.2018.09.255

    Article  CAS  Google Scholar 

  • Jones M, Huynh T, Dekiwadia C, Daver F, John S (2017a) Mycelium composites: a review of engineering characteristics and growth kinetics. J Bionanosci 11(4):241–257. https://doi.org/10.1166/jbns.2017.1440

    Article  CAS  Google Scholar 

  • Jones M, Bhat T, Wang CH, Moinuddin K., John S (2017b) Thermal degradation and fire reaction properties of mycelium composites. In: Proceedings of the 21st international conference on composite materials, Xi’an, China, pp 20–25

    Google Scholar 

  • Jones M, Huynh T, John S (2018a) Inherent species characteristic influence and growth performance assessment for mycelium composite applications. Adv Mater Lett 9(1):71–80. https://doi.org/10.5185/amlett.2018.1977

    Article  CAS  Google Scholar 

  • Jones M, Bhat T, Huynh T, Kandare E, Yuen R, Wang CH, John S (2018b) Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater 42(7):816–825. https://doi.org/10.1002/fam.2637

    Article  CAS  Google Scholar 

  • Jones M, Bhat T, Kandare E, Thomas A, Joseph P, Dekiwadia C, Yuen R, John S, Ma J, Wang CH (2018c) Thermal degradation and fire properties of fungal mycelium and mycelium-biomass composite materials. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-36032-9

    Article  CAS  Google Scholar 

  • Jones MP, Lawrie AC, Huynh TT, Morrison PD, Mautner A, Bismarck A, John S (2019) Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process Biochem 80:95–102. https://doi.org/10.1016/j.procbio.2019.01.018

    Article  CAS  Google Scholar 

  • Jones M, Mautner A, Luenco S, Bismarck A, John S (2020) Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater Des 187:108397. https://doi.org/10.1016/j.matdes.2019.108397

    Article  CAS  Google Scholar 

  • Kalisz RE, Rocco CA (2011) Hardened mycelium structure and method. US Patent 12/796,876, 15 Dec 2011

    Google Scholar 

  • Khoo SC, Peng WX, Yang Y, Ge SB, Soon CF, Ma NL, Sonne C (2020) Development of formaldehyde-free bio-board produced from mushroom mycelium and substrate waste. J Hazard Mater 400:123296. https://doi.org/10.1016/j.jhazmat.2020.123296

    Article  CAS  PubMed  Google Scholar 

  • Lacourse NL, Altieri PA (1989) Biodegradable packaging material and the method of preparation thereof. US Patent 4,863,655, 5 Sept 1989

    Google Scholar 

  • Lakk H, Krijgsheld P, Montalti M, Woesten H (2018) Fungal based biocomposite for habitat structures on the Moon and Mars. In: 69th International astronautical congress, Berlin, 1–5 Oct 2018

    Google Scholar 

  • Lelivelt RJJ (2015) The mechanical possibilities of mycelium materials. Dissertation, Eindhoven University of Technology (TU/e)

    Google Scholar 

  • Martins SI, Jongen WM, Van Boekel MA (2000) A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci Technol 11(9–10):364–373. https://doi.org/10.1016/S0924-2244(01)00022-X

    Article  CAS  Google Scholar 

  • Meyer V (2021) The beauty and the morbid: fungi as source of inspiration in contemporary art. w/k-Zwischen Wissenschaft & Kunst

    Google Scholar 

  • Momenteller R (2017) Comparing two Schizophyllum species’ developmental strategies through their hydrophobins. Dissertation, Southern Illinois University at Edwardsville

    Google Scholar 

  • Mouritz AP, Gibson AG (2007) Fire properties of polymer composite materials (volume 143 of solid mechanics and its applications). Springer, New York

    Google Scholar 

  • Nai C, Meyer V (2016) The beauty and the morbid: fungi as source of inspiration in contemporary art. Fungal Biol Biotechnol 3(1):1–5. https://doi.org/10.1186/s40694-016-0028-4

    Article  Google Scholar 

  • Nayak R, Nguyen LVT, Panwar T, Jajpura L (2020) Sustainable technologies and processes adapted by fashion brands. In: Nayak R (ed) Sustainable technologies for fashion and textiles. Woodhead Publishing, Sawston, pp 233–248

    Chapter  Google Scholar 

  • NEFFA (2004–2020). https://neffa.nl/portfolio/mycotex/. Accessed 30 Jan 2021

  • Pegler DN (1996) Hyphal analysis of basidiomata. Mycol Res 100(2):129–142. https://doi.org/10.1016/S0953-7562(96)80111-0

    Article  Google Scholar 

  • Pelletier MG, Holt GA, Wanjura JD, Bayer E, McIntyre G (2013) An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind Crop Prod 51:480–485. https://doi.org/10.1016/j.indcrop.2013.09.008

    Article  CAS  Google Scholar 

  • Pelletier MG, Holt GA, Wanjura JD, Lara AJ, Tapia-Carillo A, McIntyre G, Bayer E (2017) An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products. Ind Crop Prod 95:342–347. https://doi.org/10.1016/j.indcrop.2016.10.042

    Article  CAS  Google Scholar 

  • Rathore H, Prasad S, Kapri M, Tiwari A, Sharma S (2019) Medicinal importance of mushroom mycelium: mechanisms and applications. J Funct Foods 56:182–193. https://doi.org/10.1016/j.jff.2019.03.016

    Article  CAS  Google Scholar 

  • Scott R (2014) Hy-Fi, the organic mushroom-brick tower opens at MoMA’s PS1 courtyard. ArchDaily. https://www.archdaily.com/521266/hy-fi-the-organic-mushroom-brick-tower-opens-at-moma-s-ps1-courtyard. Accessed 30 Jan 2021

  • Sietsma JH, Wessels JGH (1977) Chemical analysis of the hyphal wall of Schizophyllum commune. Biochim Biophys Acta 496:225–239. https://doi.org/10.1016/0304-4165(77)90131-3

    Article  CAS  PubMed  Google Scholar 

  • Sietsma JH, Wessels JGH (1981) Solubility of (1–3)-β-D/(1–6)-β-D-glucan in fungal walls: importance of presumed linkage between glucan and chitin. J Gen Microbiol 125:209–212. https://doi.org/10.1099/00221287-125-1-209

    Article  CAS  PubMed  Google Scholar 

  • Silverman J (2018) Development and testing of mycelium-based composite materials for shoe sole applications. Dissertation, University of Delaware

    Google Scholar 

  • Silverman J, Cao H, Cobb K (2020) Development of mushroom mycelium composites for footwear products. Cloth Text Res J 38(2):119–133. https://doi.org/10.1177/2F0887302X19890006

  • Stone M (2015) The technology that will build our future may be found in mushrooms. Gizmodo. https://www.gizmodo.com.au/2015/04/the-technology-that-will-build-our-future-may-be-found-in-mushrooms/. Accessed 30 Jan 2021

  • Sun W, Tajvidi M, Hunt CG, McIntyre G, Gardner DJ (2019) Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-40442-8

    Article  CAS  Google Scholar 

  • Tacer-Caba Z, Varis JJ, Lankinen P, Mikkonen KS (2020) Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Mater Des 192:108728

    Article  Google Scholar 

  • US Environmental Protection Agency (2019) Science in action- fact sheet, National Service Center for environmental publications (NSCEP). https://nepis.epa.gov. Accessed 7 Jan 2021

  • Ütebay B, Çelik P, Çay A (2020) Textile wastes: status and perspectives. In: Körlü A (ed) Waste in textile and leather sectors. IntechOpen, London

    Google Scholar 

  • Vasquez ESL, Vega K (2019) Myco-accessories: sustainable wearables with biodegradable materials. In: Proceedings of the 23rd international symposium on wearable computers, London, 11–13 Sept 2019, pp 306–311

    Google Scholar 

  • van Wetter MA, Schuren FHJ, Schuurs TA, Wessels GJ (1996) Targeted mutation of the SC3 hydrophobin gene of Schizophyllum commune affects formation of aerial hyphae. FEMS Microbiol Lett 140(2–3):265–269. https://doi.org/10.1111/j.1574-6968.1996.tb08347.x

    Article  Google Scholar 

  • van Wetter MA, Wösten HAB, Sietsma JH, Wessels JGH (2000) Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune. Fungal Genet Biol 31:99–104. https://doi.org/10.1006/fgbi.2000.1231

    Article  CAS  PubMed  Google Scholar 

  • Wimmers G, Klick J, Tackaberry L, Zwiesigk C, Egger K, Massicotte H (2019) Fundamental studies for designing insulation panels from wood shavings and filamentous fungi. Bioresources 14(3):5506–5520

    CAS  Google Scholar 

  • Wösten H, Krijgsheld P, Montalti M, Läkk H, Summerer L (2018) Growing fungi structures in space. European Space Agency

    Google Scholar 

  • Xing Y, Brewer M, El-Gharabawy H, Griffith G, Jones P (2018) Growing and testing mycelium bricks as building insulation materials. In: IOP conference series: earth and environmental science, vol 121. IOP Publishing, Bristol, p 022032

    Google Scholar 

  • Yang K (2020) Investigations of mycelium as a low-carbon building material. Dissertation, Thayer School of Engineering Dartmouth College Hanover, New Hampshire

    Google Scholar 

  • Yang Z, Zhang F, Still B, White M, Amstislavski P (2017) Physical and mechanical properties of fungal mycelium-based biofoam. J Mater Civ Eng 29(7):04017030

    Article  Google Scholar 

  • Zarnani S, Bathurst RJ (2007) Experimental investigation of EPS geofoam seismic buffers using shaking table tests. Geosynth Int 14(3):165–177. https://doi.org/10.1680/gein.2007.14.3.165

    Article  Google Scholar 

  • Ziegler AR, Bajwa SG, Holt GA, McIntyre G, Bajwa DS (2016) Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Appl Eng Agric 32(6):931–938

    Google Scholar 

  • Zimele Z, Irbe I, Grinins J, Bikovens O, Verovkins A, Bajare D (2020) Novel mycelium-based biocomposites (MBB) as building materials. J Renew Mater 8(9):1067–1076. https://doi.org/10.32604/jrm.2020.09646

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanushka Udayanga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Udayanga, D., Miriyagalla, S.D. (2021). Fungal Mycelium-Based Biocomposites: An Emerging Source of Renewable Materials. In: Bhatt, P., Gangola, S., Udayanga, D., Kumar, G. (eds) Microbial Technology for Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-3840-4_27

Download citation

Publish with us

Policies and ethics