Skip to main content

Synergistic Interaction of Methanotrophs and Methylotrophs in Regulating Methane Emission

  • Chapter
  • First Online:
Microbial Technology for Sustainable Environment

Abstract

The atmospheric methane concentration is increasing rapidly at the rate of around 10 ppb/year. A concerted effort is required to reduce methane emission. Methanotrophs possess methane monooxygenase enzyme system and can consume a major portion of the methane produced in the environment. These microbes play a major role in the single-carbon-driven microbial food web. Microbial interaction is an important component of microbial ecology studies, and its role in community functioning and various biogeochemical cycles still remains unclear. A synergistic interaction occurs between the methanotrophs and non-methane-utilizing methylotrophs (NUM) in the natural ecosystem. The intermediates produced by the methanotrophs can be used as a carbon source by the NUM and support its existence. On the other hand, NUM consumes toxic intermediates like methanol and formaldehyde of the methanotrophs and prolongs their growth. The consumption of the intermediates (methanol, formaldehyde and formate) of the methane utilization pathway by methylotrophs as a result of cross-feeding enhances the methane utilization rate of that ecosystem. Co-inoculation of methanotrophs and NUM in the natural habitat particularly paddy ecosystem can aid in the reduction of net methane emission. This chapter highlights the role of microbial interactions, particularly between methanotrophs and methylotrophs, that can be harnessed to mitigate methane emission from the methane-rich environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, Van Wezel GP, Rozen DE (2015) Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci 112(35):11054–11059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony C, Williams P (2003) The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 1647:18–23

    Article  CAS  PubMed  Google Scholar 

  • Beck DAC, Kalyuzhnaya MG, Malfatti S, Tringe SG, Rio TG, Ivanova N, Lidstrom ME, Chistoserdova L (2013) A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ 1:e23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Article  PubMed  CAS  Google Scholar 

  • Benton TG, Solan M, Travis JM, Sait SM (2007) Microcosm experiments can inform global ecological problems. Trends Ecol Evol 22(10):516–521

    Article  PubMed  Google Scholar 

  • Bodelier PL, Meima-Franke M, Zwart G, Laanbroek HJ (2005) New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. FEMS Microbiol Ecol 52(2):163–174

    Article  CAS  PubMed  Google Scholar 

  • Bruckner A, Wright J, Kampichler C, Bauer R, Kandeler E (1995) A method of preparing mesocosms for assessing complex biotic processes in soils. Biol Fertil Soils 19(2):257–262

    Article  Google Scholar 

  • Chistoserdova L, Kalyuzhnaya MG (2018) Current trends in methylotrophy. Trends Microbiol 26(8):703–714

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corder RE, Johnson ER, Vega JL, Clausen EC, Gaddy JL (1986) Biological production of methanol from methane. Am Chem Soc Energy Fuels Div 33(3):469–478

    Google Scholar 

  • Davamani V, Parameswari E, Arulmani S (2020) Mitigation of methane gas emissions in flooded paddy soil through the utilization of methanotrophs. Sci Total Environ 726:138570

    Article  CAS  PubMed  Google Scholar 

  • Eller G, Krüger M, Frenzel P (2005) Comparing field and microcosm experiments: a case study on methano- and methylotrophic bacteria in paddy soil. FEMS Microbiol Ecol 51(2):279–291

    Article  CAS  PubMed  Google Scholar 

  • Galbally IE, Kirstine W (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem 43(3):195–229

    Article  CAS  Google Scholar 

  • Govorukhina NI, Trotsenko YA (1991) Methylovorus, a new genus of restricted facultatively methylotrophic bacteria. Int J Syst Bacteriol 41(1):158–162

    Article  CAS  Google Scholar 

  • van Grinsven S, SinningheDamsté JS, Harrison J, Polerecky L, Villanueva L (2020) Nitrate promotes the transfer of methane-derived carbon from the methanotroph Methylobacter sp. to the methylotrophs Methylotenera sp. in eutrophic lake water. Limnol Oceanogr. https://doi.org/10.1002/lno.11648

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez ME, Beck DA, Lidstrom ME, Chistoserdova L (2015) Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ 3:e801

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho A, De Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J 8:1945–1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoefman S, van der Ha D, Iguchi H, Yurimoto H, Sakai Y, Boon N, Vandamme P, Heylen K, De Vos P (2014) Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water. Int J Syst Evol Microbiol 64(6):2100–2107

    Article  CAS  PubMed  Google Scholar 

  • Hrsak D, Begonja A (2000) Possible interactions within a methanotrophic-heterotrophic groundwater community able to transform linear alkylbenzenesulfonates. Appl Environ Microbiol 66(10):4433–4439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2011) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl Environ Microbiol 77:8509–8515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2015) Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3(2):137–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen S, Neufeld JD, Birkeland NK, Hovland M, Murrell JC (2008) Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway. FEMS Microbiol Ecol 66(2):320–330

    Article  CAS  PubMed  Google Scholar 

  • Jeong S, Kim TG (2019) Development of a novel methanotrophic process with the helper microorganism Hyphomicrobium sp. NM3. J Appl Microbiol 126(2):533–544

    Article  CAS  Google Scholar 

  • Jhala YK, Vyas RV, Shelat HN, Patel HK, Patel KT (2014) Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World J Microbiol Biotechnol 30(6):1845–1860

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GN, Raftery D, Fu Y, Bringel F, Vuilleumier S (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4(1):1–7

    Article  CAS  Google Scholar 

  • Kato S, Takashino M, Igarashi K, Kitagawa W (2020) Isolation and genomic characterization of a Proteobacterial methanotroph requiring lanthanides. Microbes Environ 35(1):ME19128

    Article  PubMed Central  Google Scholar 

  • Kip N, Ouyang W, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart GJ, Jetten MS (2011) Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 77(16):5643–5654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

    Article  CAS  Google Scholar 

  • Kolb S (2009) The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep 1(5):336–346

    Article  CAS  PubMed  Google Scholar 

  • Krause SM, Johnson T, Karunaratne YS, Fu Y, Beck DA, Chistoserdova L, Lidstrom ME (2017) Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proc Natl Acad Sci 114(2):358–363

    Article  CAS  PubMed  Google Scholar 

  • Krishna BM, Khan MA, Khan ST (2019) Next-generation sequencing (NGS) platforms: an exciting era of genome sequence analysis. In: Microbial genomics in sustainable agroecosystems. Springer, Singapore, pp 89–109

    Chapter  Google Scholar 

  • Kuloyo O, Ruff SE, Cahill A, Connors L, Zorz JK, Hrabe de Angelis I, Nightingale M, Mayer B, Strous M (2020) Methane oxidation and methylotroph population dynamics in groundwater mesocosms. Environ Microbiol 22:1222–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulski JK (2016) Next-generation sequencing—an overview of the history, tools, and “omic” applications. In: Next generation sequencing-advances, applications and challenges. InTechOpen, London, pp 3–60

    Chapter  Google Scholar 

  • Larmola T, Leppänen SM, Tuittila ES, Aarva M, Merilä P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci 111(2):734–739

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Kim SY, Kim PJ, Madsen EL, Jeon CO (2014) Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem. FEMS Microbiol Ecol 88(1):195–212

    Article  CAS  PubMed  Google Scholar 

  • Macey MC, Pratscher J, Crombie AT, Murrell JC (2020) Impact of plants on the diversity and activity of methylotrophs in soil. Microbiome 8(1):1–17

    Article  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Kwon ASAT (2009) Methylophilus rhizosphaerae sp. nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 59:2904–2908

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Sundaram S (2010) Flavobacterium glycines sp. nov., a facultative methylotroph isolated from the rhizosphere of soybean. Int J Syst Evol Microbiol 60(9):2187–2192

    Article  CAS  PubMed  Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10(6):1571–1581

    Article  CAS  PubMed  Google Scholar 

  • McDonald IR, Miguez CB, Rogge G, Bourque D, Wendlandt KD, Groleau D, Murrell JC (2006) Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol Lett 255(2):225–232

    Article  CAS  PubMed  Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74(5):1305–1315

    Article  CAS  PubMed  Google Scholar 

  • McTaggart TL, Beck DA, Setboonsarng U, Shapiro N, Woyke T, Lidstrom ME, Kalyuzhnaya MG, Chistoserdova L (2015) Genomics of methylotrophy in Gram-positive methylamine-utilizing bacteria. Microorganisms 3(1):94–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris SA, Radajewski S, Willison TW, Murrell JC (2002) Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol 68(3):1446–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225

    Article  CAS  PubMed  Google Scholar 

  • Nakatsu CH, Hristova K, Hanada S, Meng X, Hanson JR, Scow KM, Kamagata Y (2006) Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56:983–989

    Article  CAS  PubMed  Google Scholar 

  • Negruţa OANA, Csutak O, Stoica I, Rusu E, Vassu T (2010) Methylotrophic yeasts: diversity and methanol metabolism. Rom Biotechnol Lett 15:5369–5375

    Google Scholar 

  • Nobuo K, Hiroya Y, Rudolf KT (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70(1):10–21

    Article  Google Scholar 

  • Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MS, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1(5):293–306

    Article  CAS  Google Scholar 

  • Oshkin IY, Beck DA, Lamb AE, Tchesnokova V, Benuska G, McTaggart TL, Kalyuzhnaya MG, Dedysh SN, Lidstrom ME, Chistoserdova L (2015) Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J 9(5):1119–1129. https://doi.org/10.1038/ismej.2014.203

    Article  CAS  PubMed  Google Scholar 

  • Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MM, Schubert CJ (2016) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr 61(S1):S101–S118

    Article  Google Scholar 

  • Paul BG, Ding H, Bagby SC, Kellermann MY, Redmond MC, Andersen GL, Valentine DL (2017) Methane-oxidizing bacteria shunt carbon to microbial mats at a marine hydrocarbon seep. Front Microbiol 8:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Piterina AV, Pembroke JT (2013) Use of PCR-DGGE based molecular methods to analyse microbial community diversity and stability during the thermophilic stages of an ATAD wastewater sludge treatment process as an aid to performance monitoring. Int Scholarly Res Notices 2013:13

    Google Scholar 

  • Qiu Q, Noll M, Abraham WR, Lu Y, Conrad R (2008) Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J 2:602–614

    Article  CAS  PubMed  Google Scholar 

  • Rani V, Bhatia A, Kaushik R (2021a) Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Sci Total Environ 775:145826

    Google Scholar 

  • Rani V, Bhatia A, Nain L, Tomar GS, Kaushik R (2021b) Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. World J Microbiol Biotechnol 37(4):56

    Google Scholar 

  • Ruiz-Ruiz P, Gomez-Borraz TL, Revah S, Morales M (2020) Methanotroph-microalgae co-culture for greenhouse gas mitigation: effect of initial biomass ratio and methane concentration. Chemosphere 259:127418

    Article  CAS  PubMed  Google Scholar 

  • Sanseverino AM, Bastviken D, Sundh I, Pickova J, Enrich-Prast A (2012) Methane carbon supports aquatic food webs to the fish level. PLoS One 7(8):e42723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp CE, den Camp HJO, Tamas I, Dunfield PF (2013) Unusual members of the PVC superphylum: the methanotrophic verrucomicrobia genus “Methylacidiphilum”. In: Planctomycetes: cell structure, origins and biology. Humana Press, Totowa, pp 211–227

    Chapter  Google Scholar 

  • Shiau YJ, Lin CW, Cai Y, Jia Z, Lin YT, Chiu CY (2020) Niche differentiation of active methane-oxidizing bacteria in estuarine mangrove forest soils in Taiwan. Microorganisms 8(8):1248

    Article  CAS  PubMed Central  Google Scholar 

  • Singh R, Ryu J, Kim SW (2019) Microbial consortia including methanotrophs: some benefits of living together. J Microbiol 57(11):939–952

    Article  PubMed  Google Scholar 

  • Stock M, Hoefman S, Kerckhof FM, Boon N, De Vos P, De Baets B, Heylen K, Waegeman W (2013) Exploration and prediction of interactions between methanotrophs and heterotrophs. Res Microbiol 164(10):1045–1054

    Article  PubMed  Google Scholar 

  • Strong PJ, Karthikeyan OP, Zhu J, Clarke W, Wu W (2017) Methanotrophs: methane mitigation, denitrification and bioremediation. In: Agro-environmental sustainability. Springer, Cham, pp 19–40

    Chapter  Google Scholar 

  • Takeuchi M, Katayama T, Yamagishi T, Hanada S, Tamaki H, Kamagata Y, Oshima K, Hattori M, Marumo K, Nedachi M, Maeda H (2014) Methyloceanibacter caenitepidi gen. nov., sp. nov., a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent. Int J Syst Evol Microbiol 64(2):462–468

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Ozaki H, Hiraoka S, Kamagata Y, Sakata S, Yoshioka H, Iwasaki W (2019) Possible cross-feeding pathway of facultative methylotrophs Methyloceanibacter caenitepidi Gela4 on methanotroph Methylocaldum marinum S8. PLoS One 14(3):e0213535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs KU, Jensen GJ, Dubilier N, Orphan VJ (2017) Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Mol Microbiol 103(2):242–252

    Article  CAS  PubMed  Google Scholar 

  • van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MS, den Camp HJO, van Niftrik L (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. Nov. Appl Environ Microbiol 80(21):6782–6791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692

    Article  CAS  PubMed  Google Scholar 

  • Veraart AJ, Garbeva P, Van Beersum F, Ho A, Hordijk CA, Meima-Franke M, Zweers AJ, Bodelier PLE (2018) Living apart together-bacterial volatiles influence methanotrophic growth and activity. ISME J 12:1163–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu HN, Subuyuj GA, Vijayakumar S, Good NM, Martinez-Gomez NC, Skovran E (2016) Lanthanide-dependent regulation of methanol oxidation systems in Methylobacterium extorquens AM1 and their contribution to methanol growth. J Bacteriol 198(8):1250–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warneke C, Karl T, Judmaier H, Hansel A, Jordan A, Lindinger W, Crutzen PJ (1999) Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: significance for atmospheric HOx chemistry. Glob Biogeochem Cycles 13(1):9–17

    Article  CAS  Google Scholar 

  • Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci 109(26):E1743–E1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waturangi DE, Francisca I, Susanto CO (2011) Genetic diversity of methylotrophic bacteria from human mouth based on amplified ribosomal DNA restriction analysis (ARDRA). Hayati J Biosci 18(2):77–81

    Article  Google Scholar 

  • Wei XM, He R, Chen M, Su Y, Ma RC (2016) Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O2 availability. Environ Sci Pollut Res 23(8):7517–7528

    Article  CAS  Google Scholar 

  • Xin JY, Cui JR, Niu JZ, Hua SF, Xia CG, Li SB, Zhu LM (2004) Production of methanol from methane by methanotrophic bacteria. Biocatal Biotransformation 22(3):225–229

    Article  CAS  Google Scholar 

  • Yanpirat P, Nakatsuji Y, Hiraga S, Fujitani Y, Izumi T, Masuda S, Mitsui R, Nakagawa T, Tani A (2020) Lanthanide-dependent methanol and formaldehyde oxidation in Methylobacterium aquaticum strain 22A. Microorganisms 8(6):822

    Article  CAS  PubMed Central  Google Scholar 

  • Yoshida N, Iguchi H, Yurimoto H, Murakami A, Sakai Y (2014) Aquatic plant surface as a niche for methanotrophs. Front Microbiol 5:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Beck DA, Chistoserdova L (2017) Natural selection in synthetic communities highlights the roles of Methylococcaceae and Methylophilaceae and suggests differential roles for alternative methanol dehydrogenases in methane consumption. Front Microbiol 8:2392

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, V. et al. (2021). Synergistic Interaction of Methanotrophs and Methylotrophs in Regulating Methane Emission. In: Bhatt, P., Gangola, S., Udayanga, D., Kumar, G. (eds) Microbial Technology for Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-3840-4_22

Download citation

Publish with us

Policies and ethics