Skip to main content

Polymer Surface Engineering in the Food Packaging Industry

  • Chapter
  • First Online:
Nanoscale Engineering of Biomaterials: Properties and Applications

Abstract

Packaging technologies have gone through a remarkable evolution since their first use in ancient Egypt. Among the diverse variety of materials available, polymers are commonly used to fabricate food packaging. The widespread use of polymers in packaging is due to their availability in large quantities, cost-effectiveness, attractive mechanical performance, and tunable barrier to gases and other volatile odorous compounds. The emerging surface engineering technologies such as mechanical patterning of the polymer surfaces, exposure to high energy radiations, wet chemical and light-induced surface chemical modifications, and nanoparticle application are revolutionizing the polymer-based food packaging industry. Both decorative and functional aspects of packaging encompass these surface engineering technologies, thus preserving the quality and prolonging life span of the packaged food. The polymer-based packaging protects food from spoilage by providing a shield against microbial and chemical toxins, temperature change, oxygen, humidity, light, and external physical forces. Recent innovations in food packaging have introduced new concepts of active, intelligent, and smart packaging. The concomitant developments in stimuli-responsive materials is enabling the advancements in packaging technologies by driving the growth in functional polymeric nanocomposites, nanomaterial-based coatings, electrospun functional material, and nano(bio)sensors. This chapter covers the recent advances in the surface engineering technologies that are at the heart of the development of polymer-based food packaging for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111(2):343–350

    Article  CAS  Google Scholar 

  • Abolghasemi-Fakhri L, Ghanbarzadeh B, Dehghannya J, Abbasi F, Adun P (2019) Styrene monomer migration from polystyrene based food packaging nanocomposite: effect of clay and ZnO nanoparticles. Food Chem Toxicol 129:77–86

    Article  CAS  PubMed  Google Scholar 

  • Abu-Isa IA (1971) Iodine treatment of nylon: effect on metal plating of the polymer. J Appl Polym Sci 15(11):2865–2876

    Article  CAS  Google Scholar 

  • Ahn BJ, Gaikwad KK, Lee YS (2016) Characterization and properties of LDPE film with gallic-acid-based oxygen scavenging system useful as a functional packaging material. J Appl Polym Sci 133(43):44138

    Article  Google Scholar 

  • Airoudj A, Bally-Le Gall F, Roucoules V (2016) Textile with durable janus wetting properties produced by plasma polymerization. J Phys Chem C 120(51):29162–29172

    Article  CAS  Google Scholar 

  • Al-Tayyar NA, Youssef AM, Al-Hindi R (2020) Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne pathogens: a review. Food Chem 310:125915

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Hernández MH, Artés-Hernández F, Ávalos-Belmontes F, Castillo-Campohermoso MA, Contreras-Esquivel JC, Ventura-Sobrevilla JM et al (2018) Current scenario of adsorbent materials used in ethylene scavenging systems to extend fruit and vegetable postharvest life. Food Bioprocess Technol 11(3):511–525

    Article  Google Scholar 

  • Aman Mohammadi M, Hosseini SM, Yousefi M (2020) Application of electrospinning technique in development of intelligent food packaging: a short review of recent trends. Food Sci Nutr 8:4656

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora A, Padua G (2010) Nanocomposites in food packaging. J Food Sci 75(1):R43–R49

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan P, Thomas M, Pothen L, Thomas S, Sreekala M (2014) Polymer films for packaging. Springer, Berlin, pp 1–8

    Google Scholar 

  • Bhunia K, Sablani SS, Tang J, Rasco B (2013) Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Compr Rev Food Sci Food Saf 12(5):523–545

    Article  CAS  PubMed  Google Scholar 

  • Bumbudsanpharoke N, Ko S (2019) Nanomaterial-based optical indicators: promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Res 12(3):489–500

    Article  Google Scholar 

  • Cáceres CA, Mazzola N, França M, Canevarolo SV (2012) Controlling in-line the energy level applied during the corona treatment. Polym Test 31(4):505–511

    Article  Google Scholar 

  • Chen A-F, Huang H-X (2016) Rapid fabrication of t-shaped micropillars on polypropylene surfaces with robust Cassie–Baxter state for quantitative droplet collection. J Phys Chem C 120(3):1556–1561

    Article  CAS  Google Scholar 

  • Chen Y-Q, Cheng J-H, Sun D-W (2019) Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: mechanisms and application advances. Crit Rev Food Sci Nutr 60:1–15

    CAS  Google Scholar 

  • Chowdhury E, Morey A (2019) Intelligent packaging for poultry industry. J Appl Poult Res 28(4):791–800

    Article  Google Scholar 

  • Chowdhury RA, Nuruddin M, Clarkson C, Montes F, Howarter J, Youngblood JP (2018) Cellulose nanocrystal (CNC) coatings with controlled anisotropy as high-performance gas barrier films. ACS Appl Mater Interfaces 11(1):1376–1383

    Article  PubMed  Google Scholar 

  • Dey A, Neogi S (2019) Oxygen scavengers for food packaging applications: a review. Trends Food Sci Technol 90:26–34

    Article  CAS  Google Scholar 

  • Di Mundo R, d’Agostino R, Palumbo F (2014) Long-lasting antifog plasma modification of transparent plastics. ACS Appl Mater Interfaces 6(19):17059–17066

    Article  PubMed  Google Scholar 

  • Dincer C, Bruch R, Costa-Rama E, Fernández-Abedul MT, Merkoçi A, Manz A et al (2019) Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater 31(30):1806739

    Article  Google Scholar 

  • Ding L, Li X, Hu L, Zhang Y, Jiang Y, Mao Z et al (2020) A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydr Polym 233:115859

    Article  CAS  PubMed  Google Scholar 

  • Ellinas K, Pujari SP, Dragatogiannis DA, Charitidis CA, Tserepi A, Zuilhof H et al (2014) Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers. ACS Appl Mater Interfaces 6(9):6510–6524

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Zhao Y, Warner RD, Johnson SK (2017) Active and intelligent packaging in meat industry. Trends Food Sci Technol 61:60–71

    Article  CAS  Google Scholar 

  • Fortunati E, Armentano I, Iannoni A, Barbale M, Zaccheo S, Scavone M et al (2012) New multifunctional poly (lactide acid) composites: mechanical, antibacterial, and degradation properties. J Appl Polym Sci 124(1):87–98

    Article  CAS  Google Scholar 

  • Gaikwad KK, Singh S, Lee YS (2017) A pyrogallol-coated modified LDPE film as an oxygen scavenging film for active packaging materials. Prog Org Coat 111:186–195

    Article  CAS  Google Scholar 

  • Gaikwad KK, Singh S, Lee YS (2018) Oxygen scavenging films in food packaging. Environ Chem Lett 16(2):523–538

    Article  CAS  Google Scholar 

  • Ghaani M, Cozzolino CA, Castelli G, Farris S (2016) An overview of the intelligent packaging technologies in the food sector. Trends Food Sci Technol 51:1–11

    Article  CAS  Google Scholar 

  • Gill YQ, Abid U, Song M (2020) High performance Nylon12/clay nanocomposites for potential packaging applications. J Appl Polym Sci 137:49247

    Article  CAS  Google Scholar 

  • Gogliettino M, Balestrieri M, Ambrosio RL, Anastasio A, Smaldone G, Proroga YT et al (2020) Extending the shelf-life of meat and dairy products via PET-modified packaging activated with the antimicrobial peptide MTP1. Front Microbiol 10:2963

    Article  PubMed  PubMed Central  Google Scholar 

  • Han JW, Ruiz-Garcia L, Qian JP, Yang XT (2018) Food packaging: a comprehensive review and future trends. Compr Rev Food Sci Food Saf 17(4):860–877

    Article  PubMed  Google Scholar 

  • Hetemi D, Pinson J (2017) Surface functionalisation of polymers. Chem Soc Rev 46(19):5701–5713

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Yousaf AB, Zhou X, Liang K, Jiang Y-F, Xu A-W (2016) Oxygen-deficient TiO2–x/methylene blue colloids: highly efficient photoreversible intelligent ink. Langmuir 32(35):8980–8987

    Article  CAS  PubMed  Google Scholar 

  • Janjarasskul T, Krochta JM (2010) Edible packaging materials. Annu Rev Food Sci Technol 1:415–448

    Article  CAS  PubMed  Google Scholar 

  • Jeevahan J, Chandrasekaran M (2019) Nanoedible films for food packaging: a review. J Mater Sci 54:12290–12318

    Article  CAS  Google Scholar 

  • Jiang M, Liu J, Wang S, Lv M, Zeng X (2014) Surface modification of bisphenol a polycarbonate using an ultraviolet laser with high-speed, direct-writing technology. Surf Coat Technol 254:423–428

    Article  CAS  Google Scholar 

  • Kaewklin P, Siripatrawan U, Suwanagul A, Lee YS (2018) Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. Int J Biol Macromol 112:523–529

    Article  CAS  PubMed  Google Scholar 

  • Knaapila M, Høyer H, Kjelstrup-Hansen J, Helgesen G (2014) Transparency enhancement for photoinitiated polymerization (UV curing) through magnetic field alignment in a piezoresistive metal/polymer composite. ACS Appl Mater Interfaces 6(5):3469–3476

    Article  CAS  PubMed  Google Scholar 

  • Kull KR, Steen ML, Fisher ER (2005) Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. J Membr Sci 246(2):203–215

    Article  CAS  Google Scholar 

  • Lee JH, Park JW, Lee HB (1991) Cell adhesion and growth on polymer surfaces with hydroxyl groups prepared by water vapour plasma treatment. Biomaterials 12(5):443–448

    Article  CAS  PubMed  Google Scholar 

  • Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing. Wiley, Chichester

    Book  Google Scholar 

  • Lindner M, Rodler N, Jesdinszki M, Schmid M, Sängerlaub S (2018) Surface energy of corona treated PP, PE and PET films, its alteration as function of storage time and the effect of various corona dosages on their bond strength after lamination. J Appl Polym Sci 135(11):45842

    Article  Google Scholar 

  • Liu J, He L, Wang L, Man Y, Huang L, Xu Z et al (2016) Significant enhancement of the adhesion between metal films and polymer substrates by UV–ozone surface modification in nanoscale. ACS Appl Mater Interfaces 8(44):30576–30582

    Article  CAS  PubMed  Google Scholar 

  • Louzi VC, de Carvalho Campos JS (2019) Corona treatment applied to synthetic polymeric monofilaments (PP, PET, and PA-6). Surf Interfaces 14:98–107

    Article  CAS  Google Scholar 

  • Maneerat C, Hayata Y (2008) Gas-phase photocatalytic oxidation of ethylene with TiO2-coated packaging film for horticultural products. Trans ASABE 51(1):163–168

    Article  CAS  Google Scholar 

  • Mangaraj S, Yadav A, Bal LM, Dash S, Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Packag Technol Res 3(1):77–96

    Article  Google Scholar 

  • Marchand-Brynaert J, Deldime M, Dupont I, Dewez J-L, Schneider Y-J (1995) Surface functionalization of poly (ethylene terephthalate) film and membrane by controlled wet chemistry: chemical characterization of carboxylated surfaces. J Colloid Interface Sci 173(1):236–244

    Article  CAS  Google Scholar 

  • Mohamed SA, El-Sakhawy M, El-Sakhawy MA-M (2020) Polysaccharides, protein and lipid-based natural edible films in food packaging: a review. Carbohydr Polym 238:116178

    Article  CAS  PubMed  Google Scholar 

  • Molinaro S, Romero MC, Boaro M, Sensidoni A, Lagazio C, Morris M et al (2013) Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. J Food Eng 117(1):113–123

    Article  CAS  Google Scholar 

  • Mozetič M (2019) Surface modification to improve properties of materials. Multidisciplinary Digital Publishing Institute, Basel

    Book  Google Scholar 

  • Mustafa F, Andreescu S (2020) Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 10(33):19309–19336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemani SK, Annavarapu RK, Mohammadian B, Raiyan A, Heil J, Haque MA et al (2018) Surface modification of polymers: methods and applications. Adv Mater Interfaces 5(24):1801247

    Article  Google Scholar 

  • Panchal SS, Vasava DV (2020) Biodegradable polymeric materials: synthetic approach. ACS Omega 5(9):4370–4379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandiyaraj KN, Selvarajan V, Rhee YH, Kim HW, Shah SI (2009) Glow discharge plasma-induced immobilization of heparin and insulin on polyethylene terephthalate film surfaces enhances anti-thrombogenic properties. Mater Sci Eng C 29(3):796–805

    Article  CAS  Google Scholar 

  • Parvinzadeh M, Moradian S, Rashidi A, Yazdanshenas M-E (2010) Surface characterization of polyethylene terephthalate/silica nanocomposites. Appl Surf Sci 256(9):2792–2802

    Article  CAS  Google Scholar 

  • Pegalajar-Jurado A, Joslin J, Hawker M, Reynolds M, Fisher E (2014) Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification. ACS Appl Mater Interfaces 6(15):12307–12320

    Article  CAS  PubMed  Google Scholar 

  • Penterman R, Klink SI, De Koning H, Nisato G, Broer DJ (2002) Single-substrate liquid-crystal displays by photo-enforced stratification. Nature 417(6884):55–58

    Article  CAS  PubMed  Google Scholar 

  • Pereira D, Losada PP, Angulo I, Greaves W, Cruz JM (2009) Development of a polyamide nanocomposite for food industry: morphological structure, processing, and properties. Polym Compos 30(4):436–444

    Article  CAS  Google Scholar 

  • Pérez-Álvarez L, Lizundia E, del Hoyo S, Sagasti A, Rubio LR, Vilas JL (2016) Polysaccharide polyelectrolyte multilayer coating on poly (ethylene terephthalate). Polym Int 65(8):915–920

    Article  Google Scholar 

  • PlasticsEurope (2016) Plastics-the facts 2016. An analysis of European plastics production, 11

    Google Scholar 

  • Qian J, Ruiz-Garcia L, Fan B, Villalba JIR, McCarthy U, Zhang B et al (2020) Food traceability system from governmental, corporate, and consumer perspectives in the European Union and China: a comparative review. Trends Food Sci Technol 99:402–412

    Article  CAS  Google Scholar 

  • Quintino L (2014) Overview of coating technologies. In: Surface modification by solid state processing. Elsevier, Amsterdam, pp 1–24

    Google Scholar 

  • Rajajeyaganthan R, Kessler F, de Mour Leal PH, Kühn S, Weibel DE (2011) Surface modification of synthetic polymers using UV photochemistry in the presence of reactive vapours. In: Macromolecular symposia. Wiley Online Library, vol 299, pp 175–182

    Google Scholar 

  • Rebollar E, Sanz M, Perez S, Hernandez M, Martín-Fabiani I, Rueda DR et al (2012) Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering. Phys Chem Chem Phys 14(45):15699–15705

    Article  CAS  PubMed  Google Scholar 

  • Regis S, Jassal M, Mukherjee N, Bayon Y, Scarborough N, Bhowmick S (2012) Altering surface characteristics of polypropylene mesh via sodium hydroxide treatment. J Biomed Mater Res A 100(5):1160–1167

    Article  PubMed  Google Scholar 

  • Rhim J-W, Hong S-I, Park H-M, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822

    Article  CAS  PubMed  Google Scholar 

  • Robertson GL (2016) Food packaging: principles and practice. CRC Press, Boca Raton

    Book  Google Scholar 

  • Roy S, Rhim JW (2021) Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr 61(14):2297–2325

    Article  CAS  PubMed  Google Scholar 

  • Rudko G, Kovalchuk A, Fediv V, Chen WM, Buyanova IA (2015) Enhancement of polymer endurance to UV light by incorporation of semiconductor nanoparticles. Nanoscale Res Lett 10(1):1–6

    Article  CAS  Google Scholar 

  • Sadeghi K, Yoon J-Y, Seo J (2020) Chromogenic polymers and their packaging applications: a review. Polym Rev 60(3):442–492

    Article  CAS  Google Scholar 

  • Saha NR, Sarkar G, Roy I, Bhattacharyya A, Rana D, Dhanarajan G et al (2016) Nanocomposite films based on cellulose acetate/polyethylene glycol/modified montmorillonite as nontoxic active packaging material. RSC Adv 6(95):92569–92578

    Article  CAS  Google Scholar 

  • Shah U, Naqash F, Gani A, Masoodi F (2016) Art and science behind modified starch edible films and coatings: a review. Compr Rev Food Sci Food Saf 15(3):568–580

    Article  CAS  PubMed  Google Scholar 

  • Shankar S, Rhim JW (2016) Polymer nanocomposites for food packaging applications. In: Functional and physical properties of polymer nanocomposites, vol 29. Wiley, New York

    Google Scholar 

  • Shankar S, Chorachoo J, Jaiswal L, Voravuthikunchai SP (2014) Effect of reducing agent concentrations and temperature on characteristics and antimicrobial activity of silver nanoparticles. Mater Lett 137:160–163

    Article  CAS  Google Scholar 

  • Sheng E, Sutherland I, Brewis D, Heath R (1995) Effects of the chromic acid etching on propylene polymer surfaces. J Adhes Sci Technol 9(1):47–60

    Article  CAS  Google Scholar 

  • Shin Y, Shin J, Lee YS (2011) Preparation and characterization of multilayer film incorporating oxygen scavenger. Macromol Res 19(9):869

    Article  CAS  Google Scholar 

  • Shin S-H, Kwon YH, Kim Y-H, Jung J-Y, Lee MH, Nah J (2015) Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9(4):4621–4627

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava A (2018) Introduction to plastics engineering. William Andrew, Cambridge

    Book  Google Scholar 

  • Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766–1782

    Article  CAS  Google Scholar 

  • Siracusa V (2019) Surface modification of polymers for food science. In: Surface modification of polymers: methods and applications. Wiley, New York, pp 347–361

    Chapter  Google Scholar 

  • Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    Article  CAS  Google Scholar 

  • Sohail M, Ashfaq B, Azeem I, Faisal A, Doğan SY, Wang J et al (2019) A facile and versatile route to functional poly (propylene) surfaces via UV-curable coatings. React Funct Polym 144:104366

    Article  CAS  Google Scholar 

  • Souza A, Benze R, Ferrão E, Ditchfield C, Coelho A, Tadini C (2012) Cassava starch biodegradable films: influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT Food Sci Technol 46(1):110–117

    Article  CAS  Google Scholar 

  • Spricigo PC, Foschini MM, Ribeiro C, Corrêa DS, Ferreira MD (2017) Nanoscaled platforms based on SiO2 and Al2O3 impregnated with potassium permanganate use color changes to indicate ethylene removal. Food Bioprocess Technol 10(9):1622–1630

    Article  CAS  Google Scholar 

  • Studer K, Decker C, Beck E, Schwalm R (2003) Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, part I. Prog Org Coat 48(1):92–100

    Article  CAS  Google Scholar 

  • Thirumdas R, Sarangapani C, Annapure US (2015) Cold plasma: a novel non-thermal technology for food processing. Food Biophys 10(1):1–11

    Article  Google Scholar 

  • Unalan IU, Cerri G, Marcuzzo E, Cozzolino CA, Farris S (2014) Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Adv 4(56):29393–29428

    Article  Google Scholar 

  • Valencia L, Nomena EM, Mathew AP, Velikov KP (2019) Biobased cellulose nanofibril–oil composite films for active edible barriers. ACS Appl Mater Interfaces 11(17):16040–16047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Veldhuizen E, Rutgers W (2001) Corona discharges: fundamentals and diagnostics. In: Invited paper, Proceedings of frontiers in low temperature plasma diagnosis IV, Rolduc, Netherlands, pp 40–49

    Google Scholar 

  • Vasile C (2018) Polymeric nanocomposites and nanocoatings for food packaging: a review. Materials 11(10):1834

    Article  PubMed Central  Google Scholar 

  • Vilela C, Kurek M, Hayouka Z, Röcker B, Yildirim S, Antunes MDC et al (2018) A concise guide to active agents for active food packaging. Trends Food Sci Technol 80:212–222

    Article  CAS  Google Scholar 

  • Vu CHT, Won K (2013) Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chem 140(1–2):52–56

    Article  CAS  PubMed  Google Scholar 

  • Werner BG, Koontz JL, Goddard JM (2017) Hurdles to commercial translation of next generation active food packaging technologies. Curr Opin Food Sci 16:40–48

    Article  Google Scholar 

  • Wihodo M, Moraru CI (2013) Physical and chemical methods used to enhance the structure and mechanical properties of protein films: a review. J Food Eng 114(3):292–302

    Article  CAS  Google Scholar 

  • Wong DE, Andler SM, Lincoln C, Goddard JM, Talbert JN (2017) Oxygen scavenging polymer coating prepared by hydrophobic modification of glucose oxidase. J Coat Technol Res 14(2):489–495

    Article  CAS  Google Scholar 

  • Wood V, Panzer MJ, Chen J, Bradley MS, Halpert JE, Bawendi MG et al (2009) Inkjet-printed quantum dot–polymer composites for full-color ac-driven displays. Adv Mater 21(21):2151–2155

    Article  CAS  Google Scholar 

  • Wyrwa J, Barska A (2017) Innovations in the food packaging market: active packaging. Eur Food Res Technol 243(10):1681–1692

    Article  CAS  Google Scholar 

  • Xiao-e L, Green AN, Haque SA, Mills A, Durrant JR (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A Chem 162(2–3):253–259

    Article  Google Scholar 

  • Xu QF, Mondal B, Lyons AM (2011) Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method. ACS Appl Mater Interfaces 3(9):3508–3514

    Article  CAS  PubMed  Google Scholar 

  • Xue C-H, Jia S-T, Zhang J, Ma J-Z (2010) Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci Technol Adv Mater 11(3):033002

    Article  PubMed  PubMed Central  Google Scholar 

  • Yameen B, Alvarez M, Azzaroni O, Jonas U, Knoll W (2009) Tailoring of poly (ether ether ketone) surface properties via surface-initiated atom transfer radical polymerization. Langmuir 25(11):6214–6220

    Article  CAS  PubMed  Google Scholar 

  • Yameen B, Khan HU, Knoll W, Förch R, Jonas U (2011) Surface initiated polymerization on pulsed plasma deposited Polyallylamine: a polymer substrate-independent strategy to soft surfaces with polymer brushes. Macromol Rapid Commun 32(21):1735–1740

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Song Y, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23(6):719–734

    Article  CAS  PubMed  Google Scholar 

  • Yildirim S, Röcker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R et al (2018) Active packaging applications for food. Compr Rev Food Sci Food Saf 17(1):165–199

    Article  PubMed  Google Scholar 

  • Yousefi H, Su H-M, Imani SM, Alkhaldi K, Filipe CDM, Didar TF (2019) Intelligent food packaging: a review of smart sensing technologies for monitoring food quality. ACS Sens 4(4):808–821

    Article  CAS  PubMed  Google Scholar 

  • Youssef AM, El-Sayed SM (2018) Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym 193:19–27

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Sun B, Zhang D, Chen G, Yang X, Yao J (2014) Reinforcement of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J Mater Chem B 2(48):8479–8489

    Article  CAS  PubMed  Google Scholar 

  • Zanetti M, Carniel TK, Dalcanton F, dos Anjos RS, Riella HG, de Araujo PH et al (2018) Use of encapsulated natural compounds as antimicrobial additives in food packaging: a brief review. Trends Food Sci Technol 81:51–60

    Article  CAS  Google Scholar 

  • Zenkiewicz M (2008) Corona discharge in an air as a method of modification of polymeric materials’ surface layers. Polimery 53(1):3–13

    Article  CAS  Google Scholar 

  • Zhai X, Wang W, Zhang H, Dai Y, Dong H, Hou H (2020) Effects of high starch content on the physicochemical properties of starch/PBAT nanocomposite films prepared by extrusion blowing. Carbohydr Polym 239:116231

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Mungara P, Jane, J.-l. (2001) Mechanical and thermal properties of extruded soy protein sheets. Polymer 42(6):2569–2578

    Article  CAS  Google Scholar 

  • Zhang X, Wang H, Niu N, Chen Z, Li S, Liu SX et al (2020) Fluorescent poly (vinyl alcohol) films containing chlorogenic acid carbon nanodots for food monitoring. ACS Applied Nano Mater 3(8):7611–7620

    Article  CAS  Google Scholar 

  • Zhu M, Ge L, Lyu Y, Zi Y, Li X, Li D et al (2017) Preparation, characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydr Polym 174:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Zille A, Oliveira FR, Souto AP (2015) Plasma treatment in textile industry. Plasma Process Polym 12(2):98–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.Y. acknowledges support from HFSP (RGY0074/2016), HEC for NRPU (Project No. 20-1740/R&D/10/3368, 20-1799/R&D/10-5302 and 5922), TDF-033 grants, and LUMS for start-up fund and FIF grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basit Yameen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azeem, I., Ashfaq, B., Sohail, M., Yameen, B. (2022). Polymer Surface Engineering in the Food Packaging Industry. In: Pandey, L.M., Hasan, A. (eds) Nanoscale Engineering of Biomaterials: Properties and Applications . Springer, Singapore. https://doi.org/10.1007/978-981-16-3667-7_16

Download citation

Publish with us

Policies and ethics