Skip to main content

Application of Insoluble Excipients in Solid Dispersion of Chinese Medicines

  • Chapter
  • First Online:
Novel Drug Delivery Systems for Chinese Medicines
  • 562 Accesses

Abstract

In recent years, as the great success of arteannuin in the area of antimalarial treatment and commercial benefit, traditional Chinese medicine (TCM) has received great attention. However, most of the active pharmaceutical ingredients (API) of Chinese medicines are hydrophobic, which causes the low oral bioavailability of Chinese medicine and extremely limits their application. To ameliorate the solubility of the hydrophobic ingredients, many strategies have been developed. Solid dispersion is considered as dosage forms with good industrial feasibility, and some of the solid dispersions have been already commercially available. In the technologies/researches of solid dispersions, excipients play a vital role by affecting the interaction of excipients-drugs and the in vitro and in vivo fate of preparations by influencing the preparation process, stability, dissolution, and finally absorption and then enhancing the oral bioavailability. Most of the researches and commercially available productions of solid dispersion focused on the hydrophilic excipients such as PEG, PVP, etc. However, some of the hydrophobic excipients used in the solid dispersions could lead to unexpected result such as improvement of the dissolution rate, the fluidity, and the storage stability of the powder and then increase the feasibility of further industrial processing into solid dosage form of tablets or capsules. Thus, here we focus on the application of hydrophobic excipients in solid dispersion of Chinese medicine and elaborate it from three aspects including excipient types, preparation methods, and application forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. PlaninsEk, O., KovacIc, B., & VrecEr, F. (2011). Carvedilol dissolution improvement by preparation of solid dispersions with porous silica. International Journal of Pharmaceutics, 406(1–2), 41–48.

    Article  CAS  PubMed  Google Scholar 

  2. Cai, C., Liu, M., Li, Y., et al. (2016). A silica-supported solid dispersion of bifendate using supercritical carbon dioxide method with enhanced dissolution rate and oral bioavailability. Drug Development and Industrial Pharmacy, 42(3), 412–417.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang, Y. R., Zhang, Z. H., Liu, Q. Y., et al. (2013). Preparation, characterization, and in vivo evaluation of tanshinone IIA solid dispersions with silica nanoparticles. International Journal of Nanomedicine, 8, 2285–2293.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yan, H. M., Sun, E., Cui, L., et al. (2015). Improvement in oral bioavailability and dissolution of tanshinone IIA by preparation of solid dispersions with porous silica. Journal of Pharmacy and Pharmacology, 67(9), 1207–1214.

    Article  CAS  PubMed  Google Scholar 

  5. Yannian, H., Xiuhua, Z., Yuangang, Z., et al. (2019). Enhanced solubility and bioavailability of apigenin via preparation of solid dispersions of mesoporous silica nanoparticles. Iranian Journal of Pharmaceutical Research, 18(1), 168–182.

    Google Scholar 

  6. Chen, B., Wang, Z., et al. (2012). In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation. International Journal of Nanomedicine, 2012, 199.

    Google Scholar 

  7. Du, X., & He, J. (2011). Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications. Nanoscale, 3(10), 3984.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Z., Chen, Y., Deng, J., et al. (2014). Solid dispersion of berberine–phospholipid complex/TPGS 1000/SiO2: Preparation, characterization and in vivo studies. International Journal of Pharmaceutics, 465(1–2), 306–316.

    Article  CAS  PubMed  Google Scholar 

  9. Curtin, C. M., Cunniffe, G. M., Lyons, F. G., et al. (2012). Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Advanced Materials, 24(6), 749–754.

    Article  CAS  PubMed  Google Scholar 

  10. Hu, S. Y., Zhang, Z. H., & Jia, X. B. (2013). [Study on andrographolide solid dispersion vectored by hydroxyapatite]. Zhongguo Zhong Yao Za Zhi, 38(3), 341–345.

    Google Scholar 

  11. Zhang, C., Li, C., Huang, S., et al. (2010). Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials, 31(12), 3374–3383.

    Article  CAS  PubMed  Google Scholar 

  12. Biomaterialia, A. (2010). In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomaterialia, 6(2), 445–454.

    Article  Google Scholar 

  13. Jiang, Y. R., Zhang, Z. H., Huang, S. Y., et al. (2014). Enhanced dissolution and stability of Tanshinone IIA base by solid dispersion system with nano-hydroxyapatite. Pharmacognosy Magazine, 10(39), 332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohsen-Nia, M., Bidgoli, M. M., Behrashi, M., et al. (2012). Human serum protein adsorption onto synthesis nano-hydroxyapatite. Protein Journal, 31(2), 150–157.

    Article  CAS  Google Scholar 

  15. Yang, P., Quan, Z., Li, C., et al. (2008). Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials, 29(32), 4341–4347.

    Article  CAS  PubMed  Google Scholar 

  16. Fatehi, P., Hamdan, F. C., & Ni, Y. (2013). Adsorption of lignocelluloses of pre-hydrolysis liquor on calcium carbonate to induce functional filler. Carbohydrate Polymers, 94(1), 531–538.

    Article  CAS  PubMed  Google Scholar 

  17. Yan, H. M., Zhang, Z. H., Jia, X. B., et al. (2015) [Study on solid dispersion of precipitated calcium carbonate-based oleanolic acid]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China Journal of Chinese Materia Medica, 40(10), 1935–1938.

    Google Scholar 

  18. Rowe, R. C., Sheskey, P. J., & Weller, P. J. (2009). Handbook of pharmaceutical excipients (6th ed.). Pharmaceutical Press.

    Google Scholar 

  19. Borrego-Sánchez, A., Carazo, E., Albertini, B., et al. (2018). Conformational polymorphic changes in the crystal structure of the chiral antiparasitic drug praziquantel and interactions with calcium carbonate. European Journal of Pharmaceutics and Biopharmaceutics, 132, 180–191.

    Article  PubMed  Google Scholar 

  20. Preisig, D., Haid, D., Varum, F. J. O., et al. (2014). Drug loading into porous calcium carbonate microparticles by solvent evaporation. European Journal of Pharmaceutics and Biopharmaceutics, 87(3), 548–558.

    Article  CAS  PubMed  Google Scholar 

  21. Svenskaya, Y., Parakhonskiy, B., Haase, A., et al. (2013). Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophysical Chemistry, 182, 11–15.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, L., Zhu, W., Lin, Q., et al. (2015). Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs. International Journal of Nanomedicine, 10, 3291–3302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brough, C., & Williams, R. O. (2013). Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. International Journal of Pharmaceutics, 453(1), 157–166.

    Article  CAS  PubMed  Google Scholar 

  24. Chavan, R. B., Rathi, S., & Shastri, N. R. (2019). Cellulose based polymers in development of amorphous solid dispersions. Asian Journal of Pharmaceutical Sciences, 14, 248.

    Article  PubMed  Google Scholar 

  25. Liu, H., Taylor, L. S., & Edgar, K. J. (2015). The role of polymers in oral bioavailability enhancement; a review. Polymer, 77, 399.

    Article  CAS  Google Scholar 

  26. Li, B., Wegiel, L. A., Taylor, L. S., et al. (2013). Stability and solution concentration enhancement of resveratrol by solid dispersion in cellulose derivative matrices. Cellulose, 20(3), 1249–1260.

    Article  CAS  Google Scholar 

  27. Deshmkh, H., Nagesh, C., Murade, A., & Usgaunkar, S. (2012). Superdisintegrants: A recent investigation and current approach. Asian Journal of Pharmacy and Technology, 2, 19–25.

    Google Scholar 

  28. Yan, H.-M., Jia, X.-B., Zhang, Z.-H., Sun, E., & Xu, Y.-H. (2015). [Study on porous starch as solid dispersion carrier of total Epimedium flavonoids]. China Journal of Materia Medica, 40(9), 1723–1726.

    Google Scholar 

  29. Chaud, M. V., Lima, A. C., Vila, M. M. D. C., et al. (2013). Development and evaluation of praziquantel solid dispersions in sodium starch glycolate. Tropical Journal of Pharmaceutical Research, 12(2), 163–168.

    Google Scholar 

  30. Srinarong, P., Faber, J. H., Visser, M. R., et al. (2009). Strongly enhanced dissolution rate of fenofibrate solid dispersion tablets by incorporation of superdisintegrants. European Journal of Pharmaceutics and Biopharmaceutics, 73(1), 154–161.

    Article  CAS  PubMed  Google Scholar 

  31. Hughey, J. R., Keen, J. M., Bennett, R. C., et al. (2015). The incorporation of low-substituted hydroxypropyl cellulose into solid dispersion systems. Drug Development and Industrial Pharmacy, 41(8), 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  32. Tascon-Otero, E., Torre-Iglesias, P., Garcia-Rodriguez, J. J., et al. (2019). Enhancement of the dissolution rate of indomethacin by solid dispersions in low-substituted hydroxypropyl cellulose. Indian Journal of Pharmaceutical Sciences, 81(5), 824–833.

    Article  CAS  Google Scholar 

  33. Wang, W., Cui, C., Li, M., et al. (2017). Study of a novel disintegrable oleanolic acid-polyvinylpolypyrrolidone solid dispersion. Drug Development and Industrial Pharmacy, 43(7), 1178–1185.

    Article  CAS  PubMed  Google Scholar 

  34. Suthar, R. M., Chotai, N. P., Patel, H. K., Patel, S. R., Shah, D. D., & Jadeja, M. B. (2013). In vitro dissolution enhancement of ondansetron by solid dispersion in superdisintegrants. Dissolution Technologies, 20(4), 34–38.

    Article  CAS  Google Scholar 

  35. Shi, C., Tong, Q., Fang, J., et al. (2015). Preparation, characterization and in vivo studies of amorphous solid dispersion of berberine with hydrogenated phosphatidylcholine. European Journal of Pharmaceutical Sciences, 74, 11–17.

    Article  CAS  PubMed  Google Scholar 

  36. Guo, S., Wang, G., Wu, T., et al. (2017). Solid dispersion of berberine hydrochloride and Eudragit® S100: Formulation, physicochemical characterization and cytotoxicity evaluation. Journal of Drug Delivery Science and Technology, 40, 21.

    Article  CAS  Google Scholar 

  37. Passerini, N., Albertini, B., Perissutti, B., & Rodriguez, L. (2006). Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. International Journal of Pharmaceutics, 318, 92–102.

    Article  CAS  PubMed  Google Scholar 

  38. Verhoeven, E., De Beer, T., Schacht, E., Van den Mooter, G., Remon, J. P., & Vervaet, C. (2009). Influence of polyethylene glycol/polyethylene oxide on the release characteristics of sustained-release ethylcellulose mini-matrices produced by hot-melt extrusion: In vitro and in vivo evaluations. European Journal of Pharmaceutics and Biopharmaceutics, 72, 463–470.

    Article  CAS  PubMed  Google Scholar 

  39. Williams, M., Tian, Y., Jones, D. S., & Andrews, G. P. (2010). Hot-melt extrusion technology: Optimizing drug delivery. European Journal of Parenteral and Pharmaceutical Sciences, 15, 61.

    Google Scholar 

  40. Leuner, C., & Dressman, J. (2000). Improving drug solubility for oral delivery using solid dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 50, 47–60.

    Article  CAS  PubMed  Google Scholar 

  41. Sahoo, N. G., Kakran, M., Li, L., Judeh, Z., & Müller, R. H. (2011). Dissolution enhancement of a poorly water-soluble antimalarial drug by means of a modified multi-fluid nozzle pilot spray drier. Materials Science & Engineering, C: Materials for Biological Applications, 31, 391–399.

    Article  CAS  Google Scholar 

  42. Vo, L. N., Park, C., & Lee, B. J. (2013). Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 85, 799–813.

    Article  CAS  PubMed  Google Scholar 

  43. Srinarong, P., de Waard, H., Frijlink, H. W., & Hinrichs, W. L. (2011). Improved dissolution behavior of lipophilic drugs by solid dispersions: The production process as starting point for formulation considerations. Expert Opinion on Drug Delivery, 8, 1121–1140.

    Article  CAS  PubMed  Google Scholar 

  44. Bikiaris, D. N. (2011). Solid dispersions, Part I: Recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opinion on Drug Delivery, 8, 1501–1519.

    Article  CAS  PubMed  Google Scholar 

  45. Dan Smithey, P. G., & Taylor, L. (2013). Amorphous solid dispersions: An enabling formulation technology for oral delivery of poorly water soluble drugs. AAPS Newsmagazine, 16, 11–14.

    Google Scholar 

  46. Purvis, T., Mattucci, M. E., Crisp, M. T., Johnston, K. P., & Williams, R. O. (2007). Rapidly dissolving repaglinide powders produced by the ultra-rapid freezing process. AAPS PharmSciTech, 8, E52–E60.

    Article  PubMed Central  Google Scholar 

  47. Hu, J. H., Rogers, T. L., Brown, J., Young, T., Johnston, K. P., & Williams, R. O. (2002). Improvement of dissolution rates of poorly water soluble APIs using novel spray freezing into liquid technology. Pharmaceutical Research, 19, 1278–1284.

    Article  CAS  PubMed  Google Scholar 

  48. Hu, J. H., Johnston, K. P., & Williams, R. O. (2003). Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: Organic solvent versus organic/aqueous co-solvent systems. European Journal of Pharmaceutical Sciences, 20, 295–303.

    Article  CAS  PubMed  Google Scholar 

  49. Tong, H., Du, Z., Wang, G. N., Chan, H. M., Chang, Q., Lai, L., et al. (2011). Spray freeze drying with polyvinylpyrrolidone and sodium caprate for improved dissolution and oral bioavailability of oleanolic acid, a BCS Class IV compound. International Journal of Pharmaceutics, 404, 148–158.

    Article  CAS  PubMed  Google Scholar 

  50. Drooge, D. V., Hinrichs, W., Dickhoff, B., Elli, M., Visser, M., Zijlstra, G. S., et al. (2005). Spray freeze drying to produce a stable-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation, Spray freeze drying to produce a stable Δ9-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation. European Journal of Pharmaceutical Sciences, 26, 231.

    Article  PubMed  Google Scholar 

  51. Yu, D.-G., Li, J.-J., Williams, G. R., & Zhao, M. (2018). Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. Journal of Controlled Release, 292, 91–110.

    Article  CAS  PubMed  Google Scholar 

  52. Yu, D. G., Shen, X. X., Branford-White, C., White, K., Zhu, L. M., & Bligh, S. W. (2009). Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology, 20, 055104.

    Article  PubMed  Google Scholar 

  53. Kawakami, K. (2012). Miscibility analysis of particulate solid dispersions prepared by electrospray deposition. International Journal of Pharmaceutics, 433, 71–78.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, C., & Wang, M. (2014). Electrospun Multifunctional Tissue Engineering Scaffolds. Frontiers of Materials Science, 8, 3–19.

    Article  CAS  Google Scholar 

  55. Shah, N., Iyer, R. M., Mair, H. J., Choi, D. S., Tian, H., Diodone, R., Fahnrich, K., Pabst-Ravot, A., Tang, K., Scheubel, E., Grippo, J. F., Moreira, S. A., Go, Z., Mouskountakis, J., Louie, T., Ibrahim, P. N., Sandhu, H., Rubia, L., Chokshi, H., … Malick, W. (2013). Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. Journal of Pharmaceutical Sciences, 102, 967–981.

    Article  CAS  PubMed  Google Scholar 

  56. Sertsou, G., Butler, J., Scott, A., Hempenstall, J., & Rades, T. (2002). Factors affecting incorporation of drug into solid solution with HPMCP during solvent change co-precipitation. International Journal of Pharmaceutics, 245, 99–108.

    Article  CAS  PubMed  Google Scholar 

  57. Abuzar, S. M., Hyun, S.-M., Kim, J.-H., Park, H. J., Kim, M.-S., Park, J.-S., & Hwang, S.-J. (2018). Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. International Journal of Pharmaceutics, 538, 1–13.

    Article  CAS  PubMed  Google Scholar 

  58. Goldberg, A. H., Gibaldi, M., & Kanig, J. L. (1966). Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures III. Journal of Pharmaceutical Sciences, 55, 487–492.

    Article  CAS  Google Scholar 

  59. Jia, X. B., Yan, H. M., Zhang, Z. H., et al. (2014). An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO3 and poloxamer 188. Pharmacognosy Magazine, 10(38), 311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, H., Lv, H., Zhang, Z. (2021). Application of Insoluble Excipients in Solid Dispersion of Chinese Medicines. In: Feng, N., Yang, Z. (eds) Novel Drug Delivery Systems for Chinese Medicines. Springer, Singapore. https://doi.org/10.1007/978-981-16-3444-4_12

Download citation

Publish with us

Policies and ethics