Skip to main content

Pearl Millet: Biofortification Approaches in a Micronutrient Dense, Climate-Resilient Nutri-Cereal

  • Chapter
  • First Online:
Biofortification of Staple Crops

Abstract

Pearl millet forms an integral part of food and nutritional security to the millions resource-poor inhabitants in the semi-arid and arid regions of the world. Earlier considered as orphan, under used and neglected crop, pearl millet is the powerhouse of nutrients and has high resilience to harsh environments such as drought, salinity, and extreme temperature. It can yield well with limited resources. Micronutrient malnutrition “hidden hunger” continues to linger throughout the developing world particularly in the marginal environments where people cannot afford to have nutrient supplements in their diets. Hence improving the nutrient profile of native climate-resilient staple food crop like pearl millet can address the problem of micronutrient malnutrition. In this route, research was initiated on biofortification of grain micronutrients in pearl millet by ICRISAT and various NARS partners, resulted astounding progress in understanding the diversity and genetics of the traits, mapping and thereby devising a way to manipulate them for the development of high micronutrient-rich cultivars. Many of these cultivars became popular among farmers of India and Africa resulting in dynamic livelihood changes. The current chapter describes the success story of pearl millet biofortification program in context to micronutrient enrichment in grains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AICPMIP (2020) Project coordinator review, 2019–20. All India Co-ordinated Research Project on Pearl Millet (AICPMIP), Jodhpur, India. Available at: http://www.aicpmip.res.in/pcr2020.pdf. Accessed 27 July 2020

  • AICPMIP (2018) Project coordinator review, 2017–18. All India Co-ordinated Research Project on Pearl Millet (AICPMIP), Jodhpur, India. Available at: http://www.aicpmip.res.in/pcr2018.PDF. Accessed 27 July 2020

  • Anuradha N, Satyavathi CT, Bharadwaj C et al (2017a) Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front Plant Sci 8:412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anuradha N, Satyavathi CT, Meena MC et al (2017b) Evaluation of pearl millet [Pennisetum glaucum (L.) R. Br.] for grain iron and zinc content in different agro climatic zones of India. Indian J Genet Plant Breed 77(1):65–73

    CAS  Google Scholar 

  • APEDA (2020) Agricultural and Processed Food Products Export Development Authority (APEDA), Department of Commerce and Industry, Union Budget 2020–21, Press Information Bureau, Ministry of Statistics and Programme Implementation, Press Releases, Media Reports, Ministry of Agriculture and Farmers Welfare, Crisil

    Google Scholar 

  • Arulselvi S, Mohanasundaram K, Selvi B et al (2006) Heterosis for grain yield components and grain quality characters in pearl millet. In: Sorghum improvement conference of North America, Lubbock, USA. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

    Google Scholar 

  • Arulselvi S, Mohanasundaram K, Selvi B et al (2007) Genetic variability studies and interrelationships among nutritional quality characters, phytate phosphorus and grain yield in the seeds of pearl millet [Pennisetum glaucum (L.) R. Sr.]. Indian J Genet Plant Breed 67(1):37–40

    Google Scholar 

  • Bashir EM, Ali AM, Ali AM et al (2014) Characterization of Sudanese pearl millet germplasm for agro-morphological traits and grain nutritional values. Plant Genet Res 12(1):35–47

    CAS  Google Scholar 

  • Bernardo R, Charcosset A (2006) Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Sci 46(2):614–621

    Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S-20

    Google Scholar 

  • Bouis HE, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(Suppl. 1):S31–S40

    PubMed  Google Scholar 

  • Brune M, Hallberg L, Skånberg AB (1991) Determination of iron-binding phenolic groups in foods. J Food Sci 56(1):128–131

    CAS  Google Scholar 

  • Burton GW, Wallace AT, Rachie KO (1972) Chemical composition and nutritive value of pearl millet (Pennisetum typhoides (Burm.) Stapf and EC Hubbard) grain 1. Crop Sci 12(2):187–188

    CAS  Google Scholar 

  • Cakmak I, Kutman UÁ (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69(1):172–180

    Google Scholar 

  • Cercamondi CI, Icard-Verniere C, Egli IM et al (2014) A higher proportion of iron-rich leafy vegetables in a typical Burkinabe maize meal does not increase the amount of iron absorbed in young women. J Nutr 144(9):1394–1400

    CAS  PubMed  Google Scholar 

  • Dahlberg JA, Wilson JP, Snyder T (2003) Sorghum and pearl millet: health foods and industrial products in developed countries. In: Alternative uses of sorghum and pearl millet in Asia, vol 12(3), pp 42–54

    Google Scholar 

  • FAO (2003) Diet, nutrition and the prevention of chronic diseases. Report of a Joint FAO/WHO Expert Consultation. WHO Technical Report Series 916. World Health Organization, Geneva

    Google Scholar 

  • FAO, IFAD, UNICEF, WFP, WHO (2020) The State of Food Security and Nutrition in the World 2020. Transforming food systems for affordable healthy diets. FAO, Rome. https://doi.org/10.4060/ca9692en

    Book  Google Scholar 

  • Gale MD, Devos KM, Zhu JH et al (2005) New molecular marker technologies for pearl millet improvement. J Sat Agric Res 42:16–17

    Google Scholar 

  • Gaoh BSB, Gangashetty PI, Mohammed R et al (2020) Generation mean analysis of pearl millet [Pennisetum glaucum (L.) R. Br.] grain iron and zinc contents and agronomic traits in West Africa. J Cereal Sci 96:103066

    Google Scholar 

  • Garcı́a-Casal MN, Layrisse M, Solano L et al (1998) Vitamin A and β-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. J Nutr 128(3):646–650

    PubMed  Google Scholar 

  • GHI (2020) 2020 Global hunger index results by severity. Global hunger index—peer-reviewed annual publication designed to comprehensively measure and track hunger at the global, regional, and country levels. https://www.globalhungerindex.org/results.html

  • Gopalan C, Ramshashtri BV, Balasubramanian SC (1999) Revised and updated by Narasinga Rao BS, Deosthale YG, Pant KC. Nutritive value of Indian foods. NIN, Hyderabad, p 156

    Google Scholar 

  • Gopalan C, Sastri BVR, Balasubramanian SC (2004) Nutritive value of indian foods. National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, pp 2–58

    Google Scholar 

  • Govindaraj M, Rai KN, Shanmugasundaram P et al (2013) Combining ability and heterosis for grain iron and zinc densities in pearl millet. Crop Sci 53(2):507–517

    CAS  Google Scholar 

  • Govindaraj M, Rai KN, Pfeiffer WH et al (2016a) Energy-dispersive X-ray fluorescence spectrometry for cost-effective and rapid screening of pearl millet germplasm and breeding lines for grain iron and zinc density. Commun Soil Sci Plant Anal 47(18):2126–2134

    CAS  Google Scholar 

  • Govindaraj M, Rai KN, Shanmugasundaram P (2016b) Intra-population genetic variance for grain iron and zinc contents and agronomic traits in pearl millet. Crop J 4(1):48–54

    Google Scholar 

  • Govindaraj M, Rai KN, Cherian B et al (2019) Breeding biofortified pearl millet varieties and hybrids to enhance millet markets for human nutrition. Agriculture 9(5):106

    CAS  Google Scholar 

  • Govindaraj M, Yadav OP, Rajpurohit BS et al (2020) Genetic variability, diversity and interrelationship for twelve grain minerals in 122 commercial pearl millet cultivars in India. Agric Res 1:1–10

    Google Scholar 

  • Gregory MA, Boa Sorte Silva NC, Gill DP et al (2017) Combined dual-task gait training and aerobic exercise to improve cognition, mobility, and vascular health in community-dwelling older adults at risk for future cognitive decline 1. J Alzheimers Dis 57(3):747–763

    PubMed  Google Scholar 

  • Gupta SK, Velu G, Rai KN et al (2009) Association of grain iron and zinc content with grain yield and other traits in pearl millet (Pennisetum glaucum (L.) R. Br.). Crop Improv 36(2):4–7

    Google Scholar 

  • Hallauer A, Miranda Filho JB (1988) Quantitative genetics in maize breeding, vol 10. Iowa State University Press, Ames, p 468

    Google Scholar 

  • Hash CT, Raj AB, Lindup S et al (2003) Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crops Res 84(1–2):79–88

    Google Scholar 

  • Hefferon KL (2016) Can biofortified crops help attain food security? Curr Mol Biol Rep 2(4):180–185

    Google Scholar 

  • Jambunathan R, Subramanian V (1988) Grain quality and utilization of sorghum and pearl millet. In: Biotechnology in tropical crop improvement. ICRISAT, Patancheru, pp 133–139

    Google Scholar 

  • Kanatti A, Rai KN, Radhika K et al (2014) Relationship of grain iron and zinc content with grain yield in pearl millet hybrids. Crop Improv 41(1):91–96

    Google Scholar 

  • Kanatti A, Govindaraj M, Rai KN et al (2019) Maternal inheritance for grain iron and zinc densities in pearl millet. Indian J Genet Plant Breed 79(4):1–4

    Google Scholar 

  • Kent NL (1994) Kent’s technology of cereals: an introduction for students of food science and agriculture. Elsevier, Oxford

    Google Scholar 

  • Krishnan R, Meera MS (2017) Assessment of inhibitory factors on bioaccessibility of iron and zinc in pearl millet (Pennisetum glaucum (L.) R. Br.) cultivars. J Food Sci Technol 54(13):4378–4386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Hash CT, Thirunavukkarasu N et al (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 7:1636

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Hash CT, Nepolean T et al (2018) Mapping grain iron and zinc content quantitative trait loci in an iniadi-derived immortal population of pearl millet. Genes 9(5):248

    PubMed Central  Google Scholar 

  • Lestienne I, Besançon P, Caporiccio B et al (2005) Iron and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin, and fiber contents. J Agric Food Chem 53(8):3240–3247

    CAS  PubMed  Google Scholar 

  • Lestienne I, Buisson M, Lullien-Pellerin V et al (2007) Losses of nutrients and anti-nutritional factors during abrasive decortication of two pearl millet cultivars (Pennisetum glaucum). Food Chem 100(4):1316–1323

    CAS  Google Scholar 

  • Mahendrakar MD, Kumar S, Singh RB et al (2019) Genetic variability, genotype× environment interaction and correlation analysis for grain iron and zinc contents in recombinant inbred line population of pearl millet [Pennisetum glaucum (L). R. Br.]. Indian J Genet 79(3):545–551

    CAS  Google Scholar 

  • Manwaring HR, Bligh HFJ, Yadav R (2016) The challenges and opportunities associated with biofortification of pearl millet (Pennisetum glaucum) with elevated levels of grain iron and zinc. Front Plant Sci 7:1944

    PubMed  PubMed Central  Google Scholar 

  • Meenakshi JV (2006) Cost-effectiveness of mineral biofortification in India. Mimeo

    Google Scholar 

  • Minnis-Ndimba R, Kruger J, Taylor JRN et al (2015) Micro-PIXE mapping of mineral distribution in mature grain of two pearl millet cultivars. Nucl Instrum Methods Phys Res, Sect B 363:177–182

    CAS  Google Scholar 

  • National Institute of Nutrition (2017) National Institute of nutrition. In: Longvah T (ed) Indian food composition tables, 1st edn. National Institute of Nutrition, Hyderabad

    Google Scholar 

  • Nelson ARLE, Ravichandran K, Antony U (2019) The impact of the Green Revolution on indigenous crops of India. J Ethnic Foods 6(1):8

    Google Scholar 

  • Osborne BG (2006) Near-infrared spectroscopy in food analysis. Encyclopedia of analytical chemistry: applications, theory and instrumentation

    Google Scholar 

  • Pawar VY, Kute NS, Magar NM et al (2018) Genotype× environment interactions for grain micronutrient contents in pearl millet [Pennisetum glaucum (L.) R. Br.]. J Pharmacog Phytochem 7(5):37–44

    CAS  Google Scholar 

  • Pii Y, Borruso L, Brusetti L et al (2016) The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem 99:39–48

    CAS  PubMed  Google Scholar 

  • Rai KN, Govindaraj M, Rao AS (2012) Genetic enhancement of grain iron and zinc content in pearl millet. Qual Assur Saf Crops Foods 4(3):119–125

    CAS  Google Scholar 

  • Rai KN, Patil HT, Yadav OP et al (2014) Dhanashakti: a high-iron pearl millet variety. Indian Farm 64(7):32–34

    Google Scholar 

  • Rai KN, Yadav OP, Govindaraj M et al (2016) Grain iron and zinc densities in released and commercial cultivars of pearl millet (Pennisetum glaucum). Indian J Agric Sci 86(03):11–16

    Google Scholar 

  • Ramya AR, Ahamed ML, Satyavathi CT et al (2018) Towards defining heterotic gene pools in pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 8:1934

    PubMed  PubMed Central  Google Scholar 

  • Saltzman A, Birol E, Bouis HE et al (2013) Biofortification: progress toward a more nourishing future. Glob Food Sec 2(1):9–17

    Google Scholar 

  • Satyavathi CT, Sankar SM, Singh SP et al (2015) Stability analysis of grain iron and zinc content in pearl millet (Pennisetum glaucum (L.) R. Br). Int J Trop Agric 33(2):1387–1394

    Google Scholar 

  • Serna-Saldivar SO (2016) Cereal grains: properties, processing, and nutritional attributes. CRC Press, Boca Raton, FL

    Google Scholar 

  • Singh S, Gupta SK (2019) Formation of heterotic pools and understanding relationship between molecular divergence and heterosis in pearl millet [Pennisetum glaucum (L.) R. Br.]. PLoS One 14(5):e0207463

    PubMed  PubMed Central  Google Scholar 

  • Singh U, Praharaj CS, Chaturvedi SK et al (2016) Biofortification: introduction, approaches, limitations, and challenges. In: Biofortification of food crops. Springer, New Delhi, pp 3–18

    Google Scholar 

  • Singhal T, Satyavathi CT, Kumar A et al (2018) Genotype× environment interaction and genetic association of grain iron and zinc content with other agronomic traits in RIL population of pearl millet. Crop Pasture Sci 69(11):1092–1102

    CAS  Google Scholar 

  • Singhal T, Satyavathi CT, Singh SP et al (2019) Identification of new stable and high iron rich fertility restorers in pearl millet. Indian J Genet 79(3):552–562

    CAS  Google Scholar 

  • Srivastava RK, Singh RB, Srikanth B et al (2020a) Genome-wide association studies (GWAS) and genomic selection (GS) in pearl millet: advances and prospects. Front Genet 10:1389

    PubMed  PubMed Central  Google Scholar 

  • Srivastava RK, Bollam S, Pujarula V et al (2020b) Exploitation of heterosis in pearl millet: a review. Plants 9(7):807

    CAS  Google Scholar 

  • Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335(1–2):133–154

    CAS  Google Scholar 

  • Swaminathan MS (2013) Genesis and growth of the yield revolution in wheat in India: lessons for shaping our agricultural destiny. Agric Res 2(3):183–188

    Google Scholar 

  • Taylor JRN (2004) Millet pearl. In: Encyclopedia of grain sciences, vol 2. Elsevier, Amsterdam, pp 253–261

    Google Scholar 

  • Varshney RK, Shi C, Thudi M et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35(10):969–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velu G (2006) Genetic variability, stability and inheritance of grain iron and zinc content in pearl millet (Pennisetum glaucum (L.) R. Br.). PhD thesis, Tamil Nadu Agricultural University, Coimbatore, India

    Google Scholar 

  • Velu G, Rai KN, Muralidharan V et al (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed 126(2):182–185

    CAS  Google Scholar 

  • Velu G, Rai KN, Muralidharan V et al (2011) Gene effects and heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R. Br). Euphytica 180(2):251–259

    CAS  Google Scholar 

  • Yadav OP, Rai KN, Yadav HP et al (2016) Assessment of diversity in commercial hybrids of pearl millet in India. Indian J Plant Genet Res 29(2):130–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, R.K. et al. (2022). Pearl Millet: Biofortification Approaches in a Micronutrient Dense, Climate-Resilient Nutri-Cereal. In: Kumar, S., Dikshit, H.K., Mishra, G.P., Singh, A. (eds) Biofortification of Staple Crops. Springer, Singapore. https://doi.org/10.1007/978-981-16-3280-8_7

Download citation

Publish with us

Policies and ethics