Skip to main content

Ultrasound Added Additive Manufacturing for Metals and Composites: Process and Control

  • Chapter
  • First Online:
Additive and Subtractive Manufacturing of Composites

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

Additive manufacturing (AM), also referred as 3D printing, is becoming the backbone of the industrial production system to manufacture cost-effective, lighter, more robust, and reliable structural components. This paper aims to quickly review the research progress of ultrasonic vibration-assisted AM of metals and composites. Standardized methods of ultrasonic vibration addition into the AM processes have been dealt including a thorough discussion of their effects on metal’s and composite’s properties. This work also emphasizes the milestones in the ultrasonic vibration-assisted manufacturing techniques in terms of its importance of integration and mode of applications to enhance and smoothen the production process. Further, it will be observed how the process variants in ultrasonic AM have induced the functionality and embraced for a wide range of production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amini S, Amiri M (2014) Study of ultrasonic vibrations effect on friction stir welding. Int J Adv Manuf 73(1–4):127–135

    Article  Google Scholar 

  2. Bansal A, Singla AK, Dwivedi V, Goyal DK, Singla J, Gupta MK, Krolczyk GM (2020) Influence of cryogenic treatment on mechanical performance of friction stir Al–Zn–Cu alloy weldments. J Manuf Process 56:43–53

    Article  Google Scholar 

  3. Bournias-Varotsis A, Friel RJ, Harris RA, Engstrøm DS (2018) Ultrasonic Additive manufacturing as a form-then-bond process for embedding electronic circuitry into a metal matrix. J Manuf Process 32:664–675

    Article  Google Scholar 

  4. Chen YC, Nakata K (2008) Friction stir lap joining aluminum and magnesium alloys. Scripta Mater 58(6):433–436

    Article  CAS  Google Scholar 

  5. Chua CK, Leong KF (2014). 3D printing and additive manufacturing: principles and applications (with companion media pack)—Fourth edition of rapid prototyping, 3d printing and additive manufacturing: principles and applications (with companion media pack)—Fourth edition of rapid prototyping

    Google Scholar 

  6. Dehoff R, Babu S (2010) Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing. Acta Mater 58:4305–4315

    Article  CAS  Google Scholar 

  7. Dinaharan I, Murugan N (2012) Effect of friction stir welding on microstructure, mechanical and wear properties of AA6061/ZrB2 in situ cast composites. Mater Sci Eng A 543:257–266

    Article  CAS  Google Scholar 

  8. Dixit US, Pandey PM, Verma GC (2019) Ultrasonic-assisted machining processes: a review. Int J Mechatron Manufact Syst 12(3–4):227–254

    Google Scholar 

  9. Firouzdor V, Kou S (2010) Formation of liquid and intermetallics in Al-to-Mg friction stir welding. Metall Mater Trans A 41(12):3238–3251

    Article  CAS  Google Scholar 

  10. Firouzdor V, Kou S (2010) Al-to-Mg friction stir welding: effect of material position, travel speed, and rotation speed. Metall Mater Trans A 41(11):2914–2935

    Article  CAS  Google Scholar 

  11. Foster DR, Dapino MJ, Babu SS (2013) Elastic constants of ultrasonic additive manufactured Al 3003–H18. Ultrasonics 53:211–218

    Article  CAS  PubMed  Google Scholar 

  12. Friel RJ (2015) Power ultrasonics for additive manufacturing and consolidating of materials. In: Power ultrasonics: applications of high-intensity ultrasound, pp 313–35

    Google Scholar 

  13. Friel RJ, Harris RA (2010) A nanometre-scale fibre-to-matrix interface characterization of an ultrasonically consolidated metal matrix composite. Proceed Inst Mech Eng Part L: J Mater: Des Appl 224(1):31–40

    Google Scholar 

  14. Friel RJ, Harris RA (2013) Ultrasonic additive manufacturing a hybrid production process for novel functional products. Procedia CIRP 6(1):35–40

    Article  Google Scholar 

  15. Gibson I, Rosen DW, Stucker B (2010) Sheet lamination processes. In: Additive manufacturing technologies, pp 223–52

    Google Scholar 

  16. Hahnlen R, Dapino MJ (2014) NiTi–Al interface strength in ultrasonic additive manufacturing composites. Compos B Eng 59:101–108

    Article  CAS  Google Scholar 

  17. Hehr A, Dapino MJ (2015) Interfacial shear strength estimates of NiTi-Al matrix composites fabricated via ultrasonic additive manufacturing. Compos B Eng 77:199–208

    Article  CAS  Google Scholar 

  18. Hopkins CD, Wolcott PJ, Dapino MJ, Truog AG, Babu SS, Fernandez SA (2012) Optimizing ultrasonic additive manufactured Al 3003 properties with statistical modeling. J Eng Mater Technol Trans ASME 134:011004

    Google Scholar 

  19. Johnson K Ultrasonic consolidation—A viable method of smart structure manufacture. In: 4th International conference on rapid manufacturing

    Google Scholar 

  20. Kar A, Yadav D, Suwas S, Kailas SV (2020) Role of plastic deformation mechanisms during the microstructural evolution and intermetallics formation in dissimilar friction stir weld. Mater Character 164:110371

    Google Scholar 

  21. Kishor B, Chaudhari GP, Nath SK (2014) Cavitation erosion of thermomechanically processed 13/4 martensitic stainless steel. Wear 319:150–159

    Article  CAS  Google Scholar 

  22. Kong C, Soar RC, Dickens PM (2004) Optimum process parameters for ultrasonic consolidation of 3003 aluminium. J Materi Process 146(2):181–187

    Article  CAS  Google Scholar 

  23. Kong CY, Soar R (2005) Method for embedding optical fibers in an aluminum matrix by ultrasonic consolidation. Appl Opt 30:6325–6333

    Article  Google Scholar 

  24. Kumar S (2016) Ultrasonic assisted friction stir processing of 6063 aluminum alloy. Archiv Civil Mech Eng 16(3):473–484

    Article  Google Scholar 

  25. Kumar S, Wu CS, Padhy GK, Ding W (2017) Application of ultrasonic vibrations in welding and metal processing: a status review. J Manuf Process 26:295–322

    Article  Google Scholar 

  26. Kumar S, Wu CS (2017b) Ultrasonic vibrations in friction stir welding: state of the art. In: 7th International conference on welding science and engineering (WSE 2017) in conjunction with 3rd international symposium on computer-aided welding engineering (CAWE 2017)

    Google Scholar 

  27. Kumar S, Ding W, Sun Z, Wu CS (2018) Analysis of the dynamic performance of a complex ultrasonic horn for application in friction stir welding. Int J Adv Manuf Technol 97(1–4):1269–1284

    Article  Google Scholar 

  28. Kumar S, Wu CS, Zhen S, Ding W (2019) Effect of ultrasonic vibration on welding load, macrostructure, and mechanical properties of Al/Mg alloy joints fabricated by friction stir lap welding. Int J Adv Manuf Technol 100(5–8):1787–1799

    Article  Google Scholar 

  29. Kumar S, Wu C, Gao S (2020) Process parametric dependency of axial downward force and macro- and microstructural morphologies in ultrasonically assisted friction stir welding of Al/Mg alloys. Metall ater Trans A 51:2863–2881

    Article  CAS  Google Scholar 

  30. Kumar S, Wu C, Shi L (2020) Intermetallic diminution during friction stir welding of dissimilar Al/Mg alloys in lap configuration via ultrasonic assistance. Metall Mater Trans A 51:5725–5742

    Article  CAS  Google Scholar 

  31. Kumar S, Wu CS (2017) Review: Mg and its alloy—Scope, future perspectives and recent advancements in welding and processing. J Harbin Inst Technol 24(06):1–37

    Google Scholar 

  32. Kumar S, Wu CS (2018) A novel technique to join Al and Mg alloys: ultrasonic vibration assisted linear friction stir welding. Materials Today: Proc 5(9):18142–18151

    CAS  Google Scholar 

  33. Kumar S, Wu CS (2020) Suppression of intermetallic reaction layer by ultrasonic assistance during friction stir welding of Al and Mg based alloys. J Alloys Compds 827:154343

    Google Scholar 

  34. Langenecker B (1966) Effects of ultrasound on deformation characteristics of metals. Trans Sonics Ultrasonics 13(1):1–8

    Article  Google Scholar 

  35. Laugier P, Haïat G (2011) Introduction to the physics of ultrasound. In: bone quantitative ultrasound, pp 29–45

    Google Scholar 

  36. Lee K-J, Kwon E-P (2014) Microstructure of stir zone in dissimilar friction stir welds of AA6061-T6 and AZ31 alloy sheets. Trans Nonfer Metals Soc China 24(7):2374–2379

    Article  CAS  Google Scholar 

  37. Levy A, Miriyev A, Sridharan N, Han T, Tuval E, Babu SS, Dapino MJ, Frage N (2018) Ultrasonic additive manufacturing of steel: method, post-processing treatments and properties J Mater Process Technol 256:183–189

    Google Scholar 

  38. Li J, Monaghan T, Masurtschak S, Bournias-Varotsis A, Friel RJ, Harris RA (2015) Exploring the mechanical strength of additively manufactured metal structures with embedded electrical materials. Mater Sci Eng, A 639:474–481

    Article  CAS  Google Scholar 

  39. Li Y, Cheng Z, Chen X, Long Y, Li X, Li F, Li J, Twiefel J (2019) Constitutive modeling and deformation analysis for the ultrasonic-assisted incremental forming process. Int J Adv Manuf Technol 104:2287–2299

    Google Scholar 

  40. Liu XC, Wu C, Padhy GK (2015) Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scripta Mater 102:95–98

    Article  CAS  Google Scholar 

  41. Liu XC, Wu CS, Padhy GK (2015) Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding. Sci Technol Weld Joining 20(4):345–352

    Article  CAS  Google Scholar 

  42. Liu XC, Wu CS (2016) Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding. Mater Des 90:350–358

    Article  CAS  Google Scholar 

  43. Lv XQ, Wu C, Yang C, Padhy GK (2018) Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of al alloy to Mg Alloy. J Mater Process Technol 254:145–157

    Article  CAS  Google Scholar 

  44. Ma H, He DQ, Liu JS (2015) Ultrasonically assisted friction stir welding of aluminium alloy 6061. Sci Technol Welding Joining 20(3):216–221

    Article  CAS  Google Scholar 

  45. Mariani E, Ghassemieh E (2010) Microstructure evolution of 6061 O Al alloy during ultrasonic consolidation: an insight from electron backscatter diffraction. Acta Mater 58(7):2492–2503

    Article  CAS  Google Scholar 

  46. Monaghan T, Capel AJ, Christie SD, Harris RA, Friel RJ (2015) Solid-state additive manufacturing for metallized optical fiber integration. Compos A Appl Sci Manuf 76:181–193

    Article  CAS  Google Scholar 

  47. Mou C, Saffari P, Li D, Zhou K, Zhang L, Soar R, Bennion I (2009) Smart structure sensors based on embedded fibre bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation. Meas Sci Technol 20:34013

    Article  CAS  Google Scholar 

  48. Moustafa AR, Durga A, Lindwall G, Cordero ZC (2020). Scheil ternary projection (STeP) diagrams for designing additively manufactured functionally graded metals. Additive Manuf 32:101008

    Google Scholar 

  49. Ning F, Cong W (2020) Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of the art and future perspectives. J Manuf Process 51:174–190

    Article  Google Scholar 

  50. Obielodan J, Stucker B (2014) A fabrication methodology for dual-material engineering structures using ultrasonic additive manufacturing. Int J Adv Manuf Technol 70:277–284

    Article  Google Scholar 

  51. Padhy GK, Wu CS, Gao S, Shi L (2016) Local microstructure evolution in Al 6061–T6 friction stir weld nugget enhanced by ultrasonic vibration. Mater Des 92:710–723

    Article  CAS  Google Scholar 

  52. Pal D, Stucker B (2013) A study of subgrain formation in Al 3003 H-18 foils undergoing ultrasonic additive manufacturing using a dislocation density based crystal plasticity finite element framework. J Appl Phys 113:203517

    Google Scholar 

  53. Park K, Kim GY, Ni J (2007) Design and analysis of ultrasonic assisted friction stir welding. In: ASME international mechanical engineering congress and exposition, vol 3

    Google Scholar 

  54. Park K (2009) Development and analysis of ultrasonic assisted friction stir welding process. 125

    Google Scholar 

  55. Patel V, Li W, Xu Y (2018) Stationary shoulder tool in friction stir processing: a novel low heat input tooling system for magnesium alloy. In: Materials and manufacturing processes, pp 1–6

    Google Scholar 

  56. Printing metal 3D objects using sounds. (n.d.). . Retrieved 10 Mar 2021 from https://www.metalworkingworldmagazine.com/printing-metal-3d-objects-using-sounds/

  57. Ram G, Yang Y, Stucker BE (2006) Effect of process parameters on bond formation during ultrasonic consolidation of aluminum alloy 3003. J Manuf Syst

    Google Scholar 

  58. Ram GDJ, Robinson C, Yang Y, Stucker BE (2007) Use of ultrasonic consolidation for fabrication of multi-material structures. Rapid Prototyping J 13(4):226–235

    Article  Google Scholar 

  59. Robinson CJ, Stucker B, Lopes AJ, Wicker R, Palmer JA (2006) Integration of Direct-Write (DW) and Ultrasonic Consolidation (UC) technologies to create advanced structures with embedded electrical circuitry. In: 17th Solid freeform fabrication symposium, SFF 2006

    Google Scholar 

  60. Ruilin L, Diqiu H, Luocheng L, Shaoyong Y, Kunyu Y (2014) A study of the temperature field during ultrasonic-assisted friction-stir welding. Int J Adv Manuf Technol 73(1–4):321–327

    Article  Google Scholar 

  61. Schomer JJ (2017). Embedding fiber bragg grating sensors through ultrasonic additive manufacturing

    Google Scholar 

  62. Schwope LA, Friel RJ, Johnson KE, Harris RA (2009) Field repair and replacement part fabrication of military components using ultrasonic consolidation cold metal deposition. In: RTO-MP-AVT-163-additive technology for repair of military hardware

    Google Scholar 

  63. Shi L, Wu CS, Liu XC (2015) Modelling the Effects of Ultrasonic Vibrations in Friction Stir Welding. J Mater Process Technol 222:91–102

    Article  CAS  Google Scholar 

  64. Shimizu S, Fujii HT, Sato YS, Kokawa H, Sriraman MR, Babu SS (2014) Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al Alloy 6061. Acta Mater 74:234–243

    Article  CAS  Google Scholar 

  65. Siggard EJ, Madhusoodanan AS, Stucker B, Eames B (2006) Structurally embedded electrical systems using ultrasonic consolidation (UC). In: 17th solid freeform fabrication symposium, SFF 2006

    Google Scholar 

  66. Singh S, Prakash C, Gupta MK (2020) On friction-stir welding of 3D printed thermoplastics. In: Materials forming, machining and post processing. Springer, pp 75–91

    Google Scholar 

  67. Sojiphan K, Sriraman MR, Babu SS (2010) Stability of microstructure in Al3003 builds made by very high power ultrasonic additive manufacturing. In: 21st Annual international solid freeform fabrication symposium—An additive manufacturing conference, SFF 2010

    Google Scholar 

  68. Song X, Feih S, Zhai W, Sun CN, Li F, Maiti R, Wei J, Yang Y, Oancea V, Brandt LR, Korsunsky AM (2020). Advances in additive manufacturing process simulation: residual stresses and distortion predictions in complex metallic components. Mater Des 193:108779

    Google Scholar 

  69. Sridharan N, Norfolk M, Babu SS (2016) Characterization of steel-Ta dissimilar metal builds made using very high power ultrasonic additive manufacturing (VHP-UAM). Metall Mater Trans A 47(5):2517–2528

    Article  CAS  Google Scholar 

  70. Sriraman M, Gonser M, Fujii HT, Babu SS, Bloss M (2011) Thermal transients during processing of materials by very high power ultrasonic additive manufacturing. J Mater Process Technol 211:1650–1657

    Article  CAS  Google Scholar 

  71. Tarasov SY, Rubtsov VE, Fortuna SV, Eliseev AA, Chumaevsky AV, Kalashnikova TA, Kolubaev EA (2017) Ultrasonic-assisted aging in friction stir welding on Al–Cu–Li–Mg aluminum alloy. Welding World 61(4):679–690

    Article  CAS  Google Scholar 

  72. Thomä M, Gester A, Wagner G, Straß B, Wolter B, Benfer S, Gowda DK, Fürbeth W (2019) Application of the hybrid process ultrasound enhanced friction stir welding on dissimilar aluminum/dual-phase steel and aluminum/magnesium joints. Materialwiss Werkstofftech 50(8):893–912

    Google Scholar 

  73. Ultrasound. (n.d.) Retrieved from https://en.wikipedia.org/wiki/Ultrasound

  74. White D (2000) Ultrasonic object consolidation. US Patent 6,519,500

    Google Scholar 

  75. Wielage B, Hoyer I, Weis S (2007) Soldering aluminum matrix composites. Welding J (Miami, Fla) 86:67–70

    CAS  Google Scholar 

  76. Wolcott PJ, Hehr A, Dapino MJ (2014) Optimized welding parameters for Al 6061 ultrasonic additive manufactured structures. J Mater Res 29(17):2055–2065

    Article  CAS  Google Scholar 

  77. Yadav VK, Gaur V, Singh IV (2020) Effect of post-weld heat treatment on mechanical properties and fatigue crack growth rate in welded AA-2024. Mater Sci Eng A 779:139116.

    Google Scholar 

  78. Yan J, Xu Z, Shi L, Ma X, Yang S (2011) Ultrasonic assisted fabrication of particle reinforced bonds joining aluminum metal matrix composites. Mater Des 32(1):343–347

    Article  CAS  Google Scholar 

  79. Yang Y, Ram GJ, Stucker BE (2009) Bond formation and fiber embedment during ultrasonic consolidation. J Mater Process Technol 209(10):4915–4924

    Article  CAS  Google Scholar 

  80. Zhao Y, Huang L, Zhao Z, Yan K (2016) Effect of travel speed on the microstructure of Al-to-Mg FSW joints. Mater Sci Technol 32(10):1025–1034

    Article  CAS  Google Scholar 

  81. Zhong YB, Wu CS, Padhy GK (2017) Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding. J Mater Process Technol 239:279–283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Kishor, B. (2021). Ultrasound Added Additive Manufacturing for Metals and Composites: Process and Control. In: Mavinkere Rangappa, S., Gupta, M.K., Siengchin, S., Song, Q. (eds) Additive and Subtractive Manufacturing of Composites. Springer Series in Advanced Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-16-3184-9_3

Download citation

Publish with us

Policies and ethics