Skip to main content

Antimicrobial Peptides as Effective Agents Against Drug-Resistant Pathogens

  • Chapter
  • First Online:
Antimicrobial Resistance

Abstract

The rising incidence of antimicrobial resistance continues to project a global healthcare concern. The spread of drug-resistant pathogens and indiscriminate use of the existing antibiotics has a profound effect on the economy of developing and under-developing countries. However, the drying pipeline of antibiotic arsenals and little progress in this direction necessitate the discovery and characterization of novel antimicrobials from natural sources. Antimicrobial peptides (AMPs) are gaining momentum as antimicrobial therapeutics with potent efficacy to tackle rising drug-resistant bacterial strains. The natural and synthetic AMPs as novel antimicrobials highlight remarkable therapeutic potential via diverse mechanism of action. Recent advances in antimicrobial research have improved our knowledge on the structure, properties, and function of AMPs; however, there is still a long way ahead for complete exploitation of these therapeutic candidates. With an overview on the emerging popularity of AMPs in countering diverse infectious diseases and drug-resistant pathogens, the chapter provides a detailed insight on the history and development of AMPs and its production in plant-based expression systems. The contribution of combinational chemistry co-integrated with computational biology in AMP research and development, projected bottlenecks, and prospects of success are further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah NA, Shah D, Abbas D, Madkour M (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 1:344–350

    Article  PubMed  Google Scholar 

  • Acar H, Srivastava S, Chung EJ, Schnorenberg MR, Barrett JC, LaBelle JL, Tirrell MJA (2017) Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliv Rev 110:65–79

    Article  PubMed  Google Scholar 

  • Agourram A, Ghirardello D, Rantsiou K, Zeppa G, Belviso S, Romane A et al (2013) Phenolic content, antioxidant potential and antimicrobial activities of fruit and vegetable by-product extracts. Int J Food Propert 16(5):1092–1104

    Article  CAS  Google Scholar 

  • Andersson E, Rydengard V, Sonesson A, Morgelin M, Bjorck L, Schmidtchen A (2004) Antimicrobial activities of heparin- binding peptides. Eur J Biochem 271(6):1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Arques JL, Fernandez J, Gaya P, Nunez M, Rodrıguez E, Medina M (2004) Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. Int J Food Microbiol 95(2):225–229

    Article  CAS  PubMed  Google Scholar 

  • Arya SS, Rookes JE, Cahill DM, Lenka SK (2020) Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories. Biotech Advances 45:107635

    Article  CAS  Google Scholar 

  • Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayukekbong JA, Ntemgwa M, Atabe AN (2017) The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 6(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  • Azmi F, Ahmad Fuaad AAH, Skwarczynski M, Toth I (2014) Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 10:778–796

    Article  CAS  PubMed  Google Scholar 

  • Bach HA (2018) New Era without Antibiotics. Antibiotics 2018:1

    CAS  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  CAS  PubMed  Google Scholar 

  • Bala N, Aitken EA, Cusack A, Steadman KJ (2012) Antimicrobial potential of Australian macrofungi extracts against foodborne and other pathogens. Phytother Res 26(3):465–469

    Article  PubMed  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and Agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1):191–203

    Article  CAS  Google Scholar 

  • Bansal AK (2008) Role of bioinformatics in the development of new antibacterial therapy. Expert Rev Anti Infect Ther 6(1):51–65

    Article  CAS  PubMed  Google Scholar 

  • Bansal A, Srivastava PA, Singh TR (2018) An integrative approach to develop computational pipeline for drug-target interaction network analysis. Sci Rep 8:10238. https://doi.org/10.1038/s41598-018-28577-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belmadani A, Semlali A, Rouabhia M (2018) Dermaseptin-S1 decreases Candida albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes. J App Microbial 125(1):72–83

    Article  CAS  Google Scholar 

  • Ben Lagha A, Haas B, Gottschalk M et al (2017) Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res 48(22). https://doi.org/10.1186/s13567-017-0425-6

  • Beutler B, Hoebe K, Du X, Ulevitch RJ (2003) How we detect microbes and respond to them: the toll-like receptors and their transducers. J Leukoc Biol 74:479–485

    Article  CAS  PubMed  Google Scholar 

  • Bikard D, Euler CW, Jiang W et al (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32(11):1146–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomqvist M, Bergquist J, Westman A (1999) Identification of defensins in human lymphocyte nuclei. Eur J Biochem 263(2):312–318

    Article  CAS  PubMed  Google Scholar 

  • Boucher HW, Talbot GH, Bradley JS (2009) Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 48:1–12

    Article  PubMed  Google Scholar 

  • Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brudzynski K, Sjaarda C, Lannigan R (2015) MRJP1-containing glycoproteins isolated from honey, a novel antibacterial drug candidate with broad spectrum activity against multi-drug resistant clinical isolates. Front Microbiol 6:711. https://doi.org/10.3389/fmicb.2015.00711

    Article  PubMed  PubMed Central  Google Scholar 

  • Cal PM, Matos MJ, Bernardes GJ (2017) Trends in therapeutic drug conjugates for bacterial diseases: a patent review. Expert Opin Ther Pat 27(2):179–189

    Article  CAS  PubMed  Google Scholar 

  • Carciofi M, Blennow A, Nielsen MM, Holm PB, Hebelstrup KHJPM (2012) Barley callus: a model system for bioengineering of starch in cereals. Plant Methods 8:1–10

    Article  Google Scholar 

  • Chahardoli M, Fazeli A, Ghabooli M (2018) Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiol Biochem 123:414–421

    Article  CAS  PubMed  Google Scholar 

  • Chan BC, Ip M, Lau CB, Lui SL, Jolivalt C, Ganem-Elbaz C et al (2011) Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J Ethnopharmacol 137:767–773

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Lu TK (2020) Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9:24. https://doi.org/10.3390/antibiotics9010024

    Article  CAS  PubMed Central  Google Scholar 

  • Choi SC, Ingale SL, Kim JS, Park YK, Kwon IK, Chae BJ (2013) An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. Br Poultry Sci 54:738–746

    Article  CAS  Google Scholar 

  • Chovanova R, Mezovska J, Vaverkova S, Mikulasova M (2015) The inhibition the Tet(K) efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Lett Appl Microbiol 61:58–62

    Article  CAS  PubMed  Google Scholar 

  • Chung YC, Yeh JY, Tsai CF (2011) Antibacterial characteristics and activity of water-soluble chitosan derivatives prepared by the Maillard reaction. Molecules 16(10):8504–8514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciocan ID, Bara I (2007) Plant products as anti-microbial agents. Genetică și Biologie Molecul 8(1):151–156

    CAS  Google Scholar 

  • Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32(11):1141–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claro B, Bastos M, Garcia-Fandino R (2018) Design and applications of cyclic peptides. In: Koutsopoulos S (ed) Peptide applications in biomedicine, biotechnology and bioengineering. Woodhead Publishing, Sawston, pp 87–129

    Chapter  Google Scholar 

  • Cudic M, Otvos L Jr (2002) Intracellular targets of antibacterial peptides. Curr Drug Targets 3(2):101–106

    Article  CAS  PubMed  Google Scholar 

  • Da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99(5):2023–2040

    Article  PubMed  Google Scholar 

  • da Cunha NB, Leite ML, Dias SC, Vianna GR, Rech Filho EL (2019) Plant genetic engineering: basic concepts and strategies for boosting the accumulation of recombinant proteins in crops. Int J Latest Trans Eng Sci

    Google Scholar 

  • da Silva LCN, da Silva MV, MTDS C (2017) Editorial: new frontiers in the search of antimicrobials agents from natural products. Front Microbiol 8:210. https://doi.org/10.3389/fmicb.2017.00210

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies J (2006) Where have all the antibiotics gone? Can J Infect Dis Med Microbiol 17:287–290

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Kraker MEA, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13(11):e1002184

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira AG, Spago FR, Simionato AS, Navarro MO, da Silva CS, Barazetti AR, Cely MV, Tischer CA, San Martin JA, de Jesus Andrade CG, Novello CR, Mello JC, Andrade G (2016) Bioactive Organocopper compound from Pseudomonas aeruginosa inhibits the growth of Xanthomonas citri subsp. citri. Front Microbiol 7:113. https://doi.org/10.3389/fmicb.2016.00113

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715. https://doi.org/10.3389/fmicb.2014.00715

    Article  PubMed  PubMed Central  Google Scholar 

  • Deslouches B, Di YP (2017) Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 8(28):46635–46651

    Article  PubMed  PubMed Central  Google Scholar 

  • Diamos AG, Mason HS (2018) High-level expression and enrichment of norovirus virus-like particles in plants using modified geminiviral vectors. Protein Expr Purif 151:86–92

    Article  CAS  PubMed  Google Scholar 

  • DiMasi JA (1995) Success rates for new drugs entering clinical testing in the United States. Clin Pharmacol Ther 58:1–14

    Article  CAS  PubMed  Google Scholar 

  • Dirisala VR, Nair RR, Srirama K, Reddy PN, Rao KRSS, Satya Sampath Kumar N, Parvatam G (2016) Recombinant pharmaceutical protein production in plants: unraveling the therapeutic potential of molecular pharming. Acta Physiol Plant 39:18

    Article  Google Scholar 

  • Dixit D, Madduri RP, Sharma R (2014) The role of tigecycline in the treatment of infections in light of the new black box warning. Expert Rev Anti Infect Ther 12:397–400

    Article  CAS  PubMed  Google Scholar 

  • Donini M, Lombardi R, Lonoce C, Di Carli M, Marusic C, Morea V, Di Micco PJB (2015) Antibody proteolysis: a common picture emerging from plants. Bioengineered 6:299–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorman H, Deans S (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88(2):308–316

    Article  CAS  PubMed  Google Scholar 

  • Draenert R, Seybold U, Grützner E, Bogner JR (2015) Novel antibiotics: are we still in the pre-post-antibiotic era? Infection 43:145–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake PM, Barbi T, Sexton A, McGowan E, Stadlmann J, Navarre C, Paul MJ, Ma JK (2009) Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco. FASEB J 23:3581–3589

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Zhao Y, Dai S, Yang B (2009) Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innov Food Sci Emerg Technol 10(1):103–107

    Article  CAS  Google Scholar 

  • Dwivedi G, Maurya A, Yadav D, Khan F, Darokar M, Srivastava S (2014) Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant Escherichia coli. Chem Biol Drug Des 86:272–283

    Article  Google Scholar 

  • Dwivedi GR, Tyagi R, Sanchita TS, Pati S, Srivastava SK et al (2017) Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. J Biomol Struct Dyn 2017:1–15. https://doi.org/10.1080/07391102.2017.1413424

    Article  CAS  Google Scholar 

  • EDCD (2014) Antimicrobial-resistance-europe-2014. http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-europe-2014.pdf

  • Edwards-Gayle CJ, Hamley IW (2017) Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Org Biomol Chem 15:5867–5876

    Article  CAS  PubMed  Google Scholar 

  • Efferth TJE (2019) Biotechnology applications of plant callus cultures. Engineering 5:50–59

    Article  CAS  Google Scholar 

  • Eliopoulos GM, Mek VG, Gold HS (2004) Antimicrobial Resistance to Linezolid. Clin Infect Dis 39:1010–1015

    Article  Google Scholar 

  • Eom SH, Kim YM, Kim SK (2012) Antimicrobial effect of phlorotannins from marine brown algae. Food Chem Toxicol 50(9):3251–3255

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara SJP (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquivel P, Jimenez VM (2012) Functional properties of coffee and coffee byproducts. Food Res Int 46(2):488–495

    Article  CAS  Google Scholar 

  • Falanga A, Galdiero S (2017) Emerging therapeutic agents on the basis of naturally occurring antimicrobial peptides. In: Ryadnov M, Hudecz F (eds) Amino acids, peptides proteins, vol 42. Royal Society of Chemistry, London, pp 190–227

    Chapter  Google Scholar 

  • Falla TJ, Karunaratne DN, Hancock REW (1996) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271(32):19298–19303

    Article  CAS  PubMed  Google Scholar 

  • Fisher AC, Kamga MH, Agarabi C, Brorson K, Lee SL, Yoon SJ (2019) The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing. Trends Biotechnol 37:253–267

    Article  CAS  PubMed  Google Scholar 

  • Folchman-Wagner Z, Zaro J, Shen WC (2017) Characterization of polyelectrolyte complex formation between anionic and cationic poly (amino acids) and their potential applications in pH-dependent drug delivery. Molecules 22:1089

    Article  PubMed Central  Google Scholar 

  • Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31(5):379–382

    Article  CAS  PubMed  Google Scholar 

  • Franklin TJ, Snow GA (1998) Biochemistry and molecular biology of antimicrobial drug action, 5th edn. Kluwer Academic Press, New York

    Book  Google Scholar 

  • Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 65(10):1545–1560

    Article  CAS  PubMed  Google Scholar 

  • Gengenbach BB, Opdensteinen P, Buyel JF (2020) Robot cookies-plant cell packs as an automated high-throughput screening platform based on transient expression. Front Bioeng Biotechnol 8:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh AK, Rao KV, Nyalapatla PR, Osswald HL, Martyr CD, Aoki M, Hayashi H, Agniswamy J, Wang YF, Bulut HJ (2017) Design and development of highly potent HIV-1 protease inhibitors with a crown-like oxotricyclic core as the P2-ligand to combat multidrug-resistant HIV variants. J Med Chem 60(10):4267–4278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason PP, Shaughnessy AF (2007) Telithromycin (Ketek) for treatment of community-acquired pneumonia. AFP 76:1857

    Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    Article  CAS  PubMed  Google Scholar 

  • Griffin SG, Wyllie SG, Markham JL (2005) Antimicrobially active terpenes cause Kþ leakage in E. coli cells. J Essent Oil Res 17(6):686–690

    Article  CAS  Google Scholar 

  • Gudiol C, Carratalà J (2014) Antibiotic resistance in cancer patients. Expert Rev Anti Infect Ther 12(8):1003–1016

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey KM, Ritala A, Cardon FJ (2020) Hairy root cultures-a versatile tool with multiple applications. Front Plant Sci 11:5

    Article  Google Scholar 

  • Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Contr 46:412–429

    Article  CAS  Google Scholar 

  • Han J, Zhao S, Ma Z, Gao L, Li H, Muhammad U (2017) The antibacterial activity and modes of LI–F type antimicrobial peptides against Bacillus cereus in vitro. J Appl Microbiol 123(3):602–614

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE (2000a) Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs 9:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE (2000b) Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs 9:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1(3):156–164

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock RE, Haney EF, Gill EE (2016) The immunology of host defense peptides: beyond antimicrobial activity. Nat Rev Immunol 16:321–334

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Patrzykat A (2002) Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2(1):79–83

    Article  CAS  PubMed  Google Scholar 

  • Hao G, Zhang S, Stover EJ (2017) Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus. PLoS One 12:e0186810

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan R, Shaaban MI, Abdel Bar FM, El-Mahdy AM, Shokralla S (2016) Quorum sensing inhibiting activity of Streptomyces coelicoflavus isolated from soil. Front Microbiol 7:659. https://doi.org/10.3389/fmicb.2016.00659

    Article  PubMed  PubMed Central  Google Scholar 

  • Henriques ST, Melo MN, Castanho MARB (2006) Cell penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera Diaz A, Kovacs I, Lindermayr C (2016) Inducible expression of the De-novo designed antimicrobial peptide SP1-1 in tomato confers resistance to Xanthomonas campestris pv. Vesicatoria. Plos One 11:e0164097

    Article  PubMed  PubMed Central  Google Scholar 

  • Holaskova E, Galuszka P, Frebort I, Oz MT (2015) Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv 33:1005–1023

    Article  CAS  PubMed  Google Scholar 

  • Holásková E, Galuszka P, Mičúchová A, Šebela M, Öz MT, Frébort IJ (2018) Molecular farming in barley: development of a novel production platform to produce human antimicrobial peptide LL-37. Biotechnol J 13:1700628

    Article  Google Scholar 

  • Huerta-Cantillo J, Navarro-García F (2016) Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells. Investigación en Discapacidad 5:96–115

    Google Scholar 

  • Humphries RM, Pollett S, Sakoulas G (2013) A current perspective on daptomycin for the clinical microbiologist. Clin Microbiol Rev 26:759–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Qarshi IA, Nazir H, Ullah IJ (2012) Plant tissue culture: current status and opportunities. IntechOpen, Rijeka, pp 1–28

    Google Scholar 

  • Ilyas H, Datta A, Bhunia AJ (2017) An approach towards structure based antimicrobial peptide design for use in development of transgenic plants: a strategy for plant disease management. Curr Med Chem 24:1350–1364

    Article  CAS  PubMed  Google Scholar 

  • Imani J, Li L, Schaefer P, Kogel KH (2011) STARTS–A stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley. Plant J 67:726–735

    Article  CAS  PubMed  Google Scholar 

  • Iyappan G, Omosimua RO, Sathishkumar R (2019) Enhanced production of therapeutic proteins in plants: novel expression strategies. In: Advances in plant transgenics: methods and applications. Springer, Cham, pp 333–351

    Chapter  Google Scholar 

  • Jiao J, Gai QY, Yao LP, Niu LL, Zang YP, Fu Y (2018) Ultraviolet radiation for flavonoid augmentation in Isatis tinctoria L. hairy root cultures mediated by oxidative stress and biosynthetic gene expression. Ind Crop Prod 118:347–354

    Article  CAS  Google Scholar 

  • Jose PA, Jebakumar SR (2014) Unexplored hypersaline habitats are sources of novel actinomycetes. Front Microbiol 5:242. https://doi.org/10.3389/fmicb.2014.00242

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung YJ, Kang KK (2014) Application of antimicrobial peptides for disease control in plants. Plant Breed Biotechnol 2:1–13

    Article  Google Scholar 

  • Kalia NP, Mahajan P, Mehra R, Nargotra A, Sharma JP, Koul S et al (2012) Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J Antimicrob Chemother 67:2401–2408

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Cho D, Park M et al (2016) CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbial Biotechnol 26(2):394

    Article  CAS  Google Scholar 

  • Kumar P, Kizhakkedathu JN, Straus SK (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomol Ther 8(1):4

    Google Scholar 

  • Kumar V, Naik B, Gusain O, Bisht GS (2014) An actinomycete isolate from solitary wasp mud nest having strong antibacterial activity and kills the Candida cells due to the shrinkage and the cytosolic loss. Front Microbiol 5:446. https://doi.org/10.3389/fmicb.2014.00446

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai P, Roy J (2004) Antimicrobial and chemo-preventive properties of herbs and spices. Curr Med Chem 11(11):1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallemand J, Bouché F, Desiron C, Stautemas J, de Lemos EF, Périlleux C, Tocquin PJ (2015) Extracellular peptidase hunting for improvement of protein production in plant cells and roots. Front Plant Sci 2015:6–37

    Google Scholar 

  • Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26(10):2700–2707

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee DG (2015) Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis. J Microbiol Biotechnol 25(6):759–764

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  CAS  PubMed  Google Scholar 

  • Levin AS, Barone AA, Penço J, Santos MV, Marinho IS, Arruda EAG, Manrique EI, Costa SF (1999) Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin Infect Dis 28(5):1008–1011

    Article  CAS  PubMed  Google Scholar 

  • Lhocine N, Ribeiro PS, Buchon N (2008) PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4:147–158

    Article  CAS  PubMed  Google Scholar 

  • Li F, Shen H, Wang M, Fan K, Bibi N, Ni M, Yuan S, Wang XJ (2016) A synthetic antimicrobial peptide BTD-S expressed in Arabidopsis thaliana confers enhanced resistance to Verticillium dahliae. Front Plant Sci 291:1647–1661

    CAS  Google Scholar 

  • Limaverde PW, Campina FF, da Cunha FA, Crispim FD, Figueredo FG, Lima LF et al (2017) Inhibition of the TetK efflux-pump by the essential oil of Chenopodium ambrosioides L. and a-terpinene against Staphylococcus aureus IS-58. Food Chem Toxicol 109:957–961

    Article  CAS  PubMed  Google Scholar 

  • Lipsky A, Joshi JR, Carmi N, Yedidia IJ (2016) Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection. J Biotechnol 238:22–29

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yao S, Chen Y (2017) Use of antimicrobial peptides as a feed additive for juvenile goats. Sci Rep 7:12254

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang XH, Yu LF, Gu DX, Ren HW, Chen XJ, Lv LC, He DD, Zhou HW, Liang Z, Liu J-H, Shen JZ (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16(2):161–168

    Article  PubMed  Google Scholar 

  • Lohner K (2017) Membrane-active antimicrobial peptides as template structures for novel antibiotic agents. Curr Top Med Chem 17(5):508–519

    Article  CAS  PubMed  Google Scholar 

  • Lombardi L, Falanga A, Del Genio V, Galdiero S (2019) A new hope: self assembling peptides with antimicrobial activity. Pharmaceutics 11(4):166

    Article  CAS  PubMed Central  Google Scholar 

  • Lonnerdal B (2011) Biological effects of novel bovine milk fractions. Nestle nutrition workshop series. Paediatr Program 67:41–54

    CAS  Google Scholar 

  • Lonoce C, Salem R, Marusic C, Jutras PV, Scaloni A, Salzano AM, Lucretti S, Steinkellner H, Benvenuto E, Donini MJ (2016) Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N. benthamiana hairy root cultures. Biotechnol J 11:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Lucera A, Costa C, Conte A, Del Nobile MA (2012) Food applications of natural antimicrobial compounds. Front Microbiol 3:287. https://doi.org/10.3389/fmicb.2012.00287

    Article  PubMed  PubMed Central  Google Scholar 

  • Lupei MI, Mann HJ, Beilman GJ, Oancea C, Chipman JG (2010) Inadequate antibiotic therapy in solid organ transplant recipients is associated with a higher mortality rate. Surg Infect (Larchmt) 11(1):33–39

    Article  Google Scholar 

  • Ma JK, Drake PM, Christou PJ (2003) The production of recombinant pharmaceutical proteins in plants. Biotechnol J 4:794–805

    CAS  Google Scholar 

  • Macnair CR, Stokes JM, Carfrae LA, Fiebig-Comyn AA, Coombes BK, Mulvey MR, Brown ED (2018) Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat Commun 9(1):458

    Article  PubMed  PubMed Central  Google Scholar 

  • Madeira LM, Szeto TH, Henquet M, Raven N, Runions J, Huddleston J, Garrard I, Drake PM, Ma JK (2016) High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures. Plant Biotechnol J 14:615–624

    Article  CAS  PubMed  Google Scholar 

  • Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, Giulianotti MA, Apidianakis Y, Bradfute S, Ferguson AL, Cherkasov A, Seleem MN, Pinilla C, de la Fuente-Nunez C, Lazaridis T, Dai T, Houghten RA, Hancock REW, Tegos GP (2020) The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis 20(9):e216–e230

    Article  CAS  PubMed  Google Scholar 

  • Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016a) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194. https://doi.org/10.3389/fcimb.2016.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016b) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Makhzoum A, Benyammi R, Moustafa K, Trémouillaux-Guiller JJ (2014) Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming. BioDrugs 28:145–159

    Article  CAS  PubMed  Google Scholar 

  • Mandalari G, Bennett R, Bisignano G, Trombetta D, Saija A, Faulds C et al (2007) Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J Appl Microbiol 103(6):2056–2064

    Article  CAS  PubMed  Google Scholar 

  • Mbewana S, Mortimer E, Pêra FFPG, Hitzeroth II, Rybicki EP (2015) Production of H5N1 influenza virus matrix protein 2 Ectodomain protein bodies in tobacco plants and in insect cells as a candidate universal influenza vaccine. Front Bioeng Biotechnol 6:5

    Google Scholar 

  • Meng DM, Zhao JF, Ling X, Dai HX, Guo YJ, Gao XF, Dong B, Zhang ZQ, Meng X, Fan ZC (2017) Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris. Protein Expr Purif 130:90–99

    Article  CAS  PubMed  Google Scholar 

  • Miller LG, Perdreau-Remington F, Rieg G, Mehdi S, Perlroth J, Bayer AS, Tang AW, Phung TO, Spellberg B (2005) Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med 352(14):1445–1453

    Article  CAS  PubMed  Google Scholar 

  • Mingeot-Leclercq MP, Décout JL (2016) Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. Med Chem Commun 7(4):586–611

    Article  CAS  Google Scholar 

  • Moiola M, Memeo MG, Quadrelli PJM (2019) Stapled peptides-a useful improvement for peptide-based drugs. Molecules 24:3654

    Article  CAS  PubMed Central  Google Scholar 

  • Mookherjee N, Hancock RE (2007) Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci 64:922–933

    Article  CAS  PubMed  Google Scholar 

  • Moon KB, Park JS, Park YI, Song IJ, Lee HJ, Cho HS, Jeon JH, Kim HS (2020) Development of systems for the production of plant-derived biopharmaceuticals. Plan Theory 9:30

    CAS  Google Scholar 

  • Moreira W, Aziz DB, Dick T (2016) Boromycin kills mycobacterial persisters without detectable resistance. Front Microbiol 7:199. https://doi.org/10.3389/fmicb.2016.00199

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller V, Rajer F, Frykholm K et al (2016) Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci Rep 6:37938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwangi J, Hao X, Lai R, Zhang ZY (2019b) Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 40(6):488–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Mwangi J, Hao X, Lai R, Zhang Z-Y (2019a) Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 40(6):488–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A (2016) Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 371:371

    Article  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak AJFM (2014) Plant antimicrobial peptides. Folia Microbiol 59:181–196

    Article  CAS  Google Scholar 

  • Nguyen LT, Chau JK, Perry NA, de Boer L, Zaat SA, Vogel HJ (2010) Serum stabilities of short tryptophan and arginine-rich antimicrobial peptide analogs. PLoS One 5:e12684

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Song P, Yue H (2020) Antimicrobial peptide derived from insulin-like growth factor-binding protein 5 activates mast cells via mas-related G protein-coupled receptor X2. Allergy 75:203–207

    Article  PubMed  Google Scholar 

  • O’Neil J (2016) Tackling drug-resistant infections globally: final report and recommendations. https://amr-review.org/sites/default/files/160525_Final paper_withcover.pdf Accessed 5 Dec 2016

  • Obembe OO, Popoola JO, Leelavathi S, Reddy SVJB (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222

    Article  PubMed  Google Scholar 

  • Oppenheim JJ, Biragyn A, Kwak LW, Yang D (2003) Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 62(2):17–21

    Google Scholar 

  • Osaki T, Omotezako M, Nagayama R (1999) Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins. J Biol Chem 274(37):26172–26178

    Article  CAS  PubMed  Google Scholar 

  • Oztürk M, Duru ME, Kivrak S, Mercan Dogan N, Turkoglu A, Ozler MA (2011) In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: a comparative study on the three most edible mushrooms. Food Chem Toxicol 49(6):1353–1360

    Article  PubMed  Google Scholar 

  • Papa R, Selan L, Parrilli E, Tilotta M, Sannino F, Feller G, Tutino ML, Artini M (2015) Anti-biofilm activities from marine cold adapted bacteria against Staphylococci and Pseudomonas aeruginosa. Front Microbiol 6:1333. https://doi.org/10.3389/fmicb.2015.01333

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS (2017) Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep 2017:44929. https://doi.org/10.1038/srep44929

    Article  CAS  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32:143–171

    Article  CAS  PubMed  Google Scholar 

  • Patiño-Rodríguez O, Ortega-Berlanga B, Llamas-González YY, Flores-Valdez MA, Herrera-Díaz A, Montes-de-Oca-Luna R, Korban SS, Alpuche-Solís ÁG (2013) Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell Tissue Organ Cult 115:99–106

    Article  Google Scholar 

  • Perez RH, Ishibashi N, Inoue T, Himeno K, Masuda Y, Sawa N (2016) Functional analysis of genes involved in the biosynthesis of enterocin NKR-5-3B, a novel circular bacteriocin. J Bacteriol 198(2):291–300

    Article  CAS  PubMed  Google Scholar 

  • Phelan M, Aherne A, FitzGerald RJ, O'Brien NM (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int Dairy J 19(11):643–654

    Article  CAS  Google Scholar 

  • Phoenix DA, Dennison SR, Harris F (2016) Bacterial resistance to host defense peptides. In: Epand RM (ed) Host defense peptides and their potential as therapeutic agents. Springer, Cham, pp 161–204

    Chapter  Google Scholar 

  • Poborilova Z, Plchova H, Cerovska N, Gunter CJ, Hitzeroth II, Rybicki EP, Moravec T (2020) Transient protein expression in tobacco BY-2 plant cell packs using single and multi-cassette replicating vectors. Plant Cell Rep 39:1115–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M et al (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654

    Article  CAS  PubMed  Google Scholar 

  • Powers JH (2014) Antimicrobial drug development-the past, the present, and the future. Clin Microbiol Infect 10(4):23–31

    Google Scholar 

  • Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109:309–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Pushpanathan M, Gunasekaran P, Rajendhran J (2013) Antimicrobial peptides: versatile biological properties. Int J Pept 2013(675391):1–15

    Article  Google Scholar 

  • Qiu HX, Gong JS, Butaye P et al (2018) CRISPR/Cas9/sgRNA-mediated targeted gene modification confirms the cause-effect relationship between gyrA mutation and quinolone resistance in Escherichia coli. FEMS Microbiol Lett 365:13

    Article  Google Scholar 

  • Rademacher T, Sack M, Blessing D, Fischer R, Holland T, Buyel J (2019) Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering. Pant Biotechnol J 17:1560–1566

    CAS  Google Scholar 

  • Rage E, Marusic C, Lico C, Baschieri S, Donini M (2020) Current state-of-the-art in the use of plants for the production of recombinant vaccines against infectious bursal disease virus. Appl Microbiol Biotechnol 104:2287–2296

    Article  CAS  PubMed  Google Scholar 

  • Raucher D, Ryu JS (2015) Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 21(9):560–570

    Article  CAS  PubMed  Google Scholar 

  • Reddy MK, Gupta SK, Jacob MR, Khan SI, Ferreira D (2007) Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med 73(05):461–467

    Article  CAS  PubMed  Google Scholar 

  • Reichert JM (2003) Trends in development and approval times for new therapeutics in the United States. Nat Rev Drug Discov 2:695–702

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro TP, Arraes FBM, Lourenço-Tessutti IT, Silva MS, Lisei-de-Sá ME, Lucena WA, Macedo LLP, Lima JN, Santos Amorim RM, Artico SJP (2017) Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil. Pant Biotechnol J 15:997–1009

    CAS  Google Scholar 

  • Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat SAJ (2017) Antimicrobial peptides in biomedical device manufacturing. Front Chem 5:63. https://doi.org/10.3389/fchem.2017.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rončević T, Puizina J, Tossi A (2019) Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era? Int J Mol Sci 20(22):5713. https://doi.org/10.3390/ijms20225713

    Article  CAS  PubMed Central  Google Scholar 

  • Roy K, Pandit G, Chetia M, Sarkar AK, Chowdhuri S, Bidkar AP, Chatterjee SJAABM (2020) Peptide hydrogels as platforms for sustained release of antimicrobial and antitumor drugs and proteins. ACS Appl Bio Mater 3:6251–6262

    Article  CAS  PubMed  Google Scholar 

  • Sagdic O, Ozturk I, Yilmaz MT, Yetim H (2011) Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. J Food Sci 76(7):M515–M521

    Article  CAS  PubMed  Google Scholar 

  • Sandreschi S, Piras AM, Batoni G, Chiellini F (2016) Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides. Nanomedicine (Lond) 11(13):1729–1744

    Article  CAS  Google Scholar 

  • Sani MA, Separovic F (2016) How membrane-active peptides get into lipid membranes. Acc Chem Res 49(6):1130–1138

    Article  CAS  PubMed  Google Scholar 

  • Sathoff AE, Velivelli S, Shah DM, Samac DA (2019) Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology 109:402–408

    Article  CAS  PubMed  Google Scholar 

  • Saurav K, Bar-Shalom R, Haber M, Burgsdorf I, Oliviero G, Costantino V, Morgenstern D, Steindler L (2016) In search of alternative antibiotic drugs: quorum-quenching activity in sponges and their bacterial isolates. Front Microbiol 7:416. https://doi.org/10.3389/fmicb.2016.00416

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwentker FF, Gelman S, Long PH (1937) The treatment of meningococcic meningitis. JAMA 108:1407–1408

    Article  CAS  Google Scholar 

  • Shabir U, Ali S, Magray AR, Ganai BA, Firdous P, Hassan T, Nazir R (2018) Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: a review. Microb Pathog 114:50–56

    Article  CAS  PubMed  Google Scholar 

  • Shafee TM, Lay FT, Phan TK, Anderson MA, Hulett MD (2017) Convergent evolution of defensin sequence, structure and function. Cell Mol Life Sci 74(4):663–682

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Zhou J, Chen G-Q, Xiu Z-L (2018) Efficient genome engineering of a virulent Klebsiella bacteriophage using CRISPR-Cas9. J. Virology 92(17):e00534

    CAS  Google Scholar 

  • Sierra JM, Fusté E, Rabanal F, Vinuesa T, Viñas M (2017) An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther 17(6):663–676

    Article  PubMed  Google Scholar 

  • Silva APSA, Silva LCN, Fonseca CSM, Araújo JM, Santos Correia MT, Silva Cavalcanti M (2016) Antimicrobial activity and phytochemical analysis of organic extracts from Cleome spinosa Jaqc. Front Microbiol 7:963. https://doi.org/10.3389/fmicb.2016.00963

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha R, PJP S (2019) Antimicrobial peptides: Recent insights on biotechnological interventions and future perspectives. Protein Pept Lett 26:79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer B, Kidan YG, Prammananan T (2001) Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother 45:2877–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starr CG, Wimley WC (2017) Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochim Biophys Acta Biomembr 1859:2319–2326

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Forsman J, Woodward CE (2017) Molecular simulations of melittin-induced membrane pores. J Phys Chem B 121(44):10209–10214

    Article  CAS  PubMed  Google Scholar 

  • Takahashi D, Shukla SK, Prakash O, Zhang G (2010) Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92:1236–1241

    Article  CAS  PubMed  Google Scholar 

  • Tasiemski A, Salzet M, Gaill FUS (2014) Antimicrobial peptides. Patent No 8,652,514

    Google Scholar 

  • Tassanakajon A, Amparyup P, Somboonwiwat K, Supungul P (2010) Cationic antimicrobial peptides in penaeid shrimp. Marine Biotechnol 12(5):487–505

    Article  CAS  Google Scholar 

  • Temple RJ (1995) Development of drug law, regulations, and guidance in the United States. In: Munson PL, Mueller RA, Breese G (eds) Principles of pharmacology basic concepts and clinical applications. Chapman & Hall, Boca Raton, pp 1643–1663

    Google Scholar 

  • Tiwari BK, Valdramidis VP, O'Donnell CP, Muthukumarappan K, Bourke P, Cullen P (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57(14):5987–6000

    Article  CAS  PubMed  Google Scholar 

  • Tiwari LD, Khungar L, Grover AJTPJ (2020) AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101. Plant J 103:2069–2083

    Article  CAS  PubMed  Google Scholar 

  • Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51(11):3062–3066

    CAS  PubMed  Google Scholar 

  • Van Epps HL (2006a) René Dubos: unearthing antibiotics. J Exp Med 203:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Epps HL (2006b) René Dubos: unearthing antibiotics. J Exp Med 203:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Varanko A, Saha S, Chilkoti A (2020) Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 156:133–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varasteh-Shams M, Nazarian-Firouzabadi F, Ismaili AJ (2020) The direct and indirect transformation methods on expressing a recombinant Dermaseptin peptide in tobacco transgenic hairy root clones. Curr Plant Biol 24:100177

    Article  Google Scholar 

  • Vriens K, Cammue B, KJM T (2014) Antifungal plant defensins: mechanisms of action and production. Molecules 19:12280–12303

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan P, Cui S, Ma Z, Chen L, Li X, Zhao R, Xiong W, Zeng Z (2020) Reversal of mcr-1-mediated Colistin resistance in Escherichia coli by CRISPR-Cas9 system. Infect Drug Resist 13:1171–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G (2017) Antimicrobial peptides: discovery, design and novel therapeutic strategies. CAB International, London

    Book  Google Scholar 

  • Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093

    Article  CAS  PubMed  Google Scholar 

  • WEF (World Economic Forum) (2013) Global risks 2013 eighth edition: an initiative of the risk response network. World Economic Forum, Geneva

    Google Scholar 

  • Weinhold A, Dorcheh EK, Li R, Rameshkumar N, Baldwin ITJE (2018) Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field. Elife 7:e28715

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (2018) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/medicines/publications/global-priority-listantibiotic-resistant-bacteria/en/

  • WHO (2019) Executive summary: the selection and use of essential medicines 2019. In: Proceedings of the report of the 22nd WHO expert committee on the selection and use of essential medicines: WHO, headquarters, Geneva, Switzerland, 1–5 April 2019

    Google Scholar 

  • Wonghirundecha S, Sumpavapol P (2012) Antibacterial activity of selected plant by-products against food-borne pathogenic bacteria. Int Conf Nutr Food Sci 39:116–120

    Google Scholar 

  • Wu D, Ding W, Zhang Y, Liu X, Yang L (2015) Oleanolic acid induces the type III secretion system of Ralstonia solanacearum. Front Microbiol 6:1466. https://doi.org/10.3389/fmicb.2015.01466

    Article  PubMed  PubMed Central  Google Scholar 

  • Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A (2016) The human cathelicidin LL-37--a pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta 1858(3):546–566

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Davidson PM, Zhong Q (2013) Thymol nano-emulsified by whey protein-maltodextrin conjugates: the enhanced emulsifying capacity and anti-listerial properties in milk by propylene glycol. J Agric Food Chem 61:12720–12726

    Article  CAS  PubMed  Google Scholar 

  • Yount NY, Yeaman MR (2004) Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci U S A 101(19):7363–7368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Tang J, Khare T, Kumar V (2020) The alarming antimicrobial resistance in ESKAPEE pathogens: can essential oils come to the rescue? Fitoterapia 140:104433. https://doi.org/10.1016/j.fitote.2019.104433

    Article  CAS  PubMed  Google Scholar 

  • Zakharchenko N, Buryanov YI, Lebedeva A, Pigoleva S, Vetoshkina D, Loktyushov E, Chepurnova M, Kreslavski V, Kosobryukhov AJ (2013) Physiological features of rapeseed plants expressing the gene for an antimicrobial peptide cecropin P1. Russian J Plant Physiol 60:411–419

    Article  CAS  Google Scholar 

  • Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9(6):e1403

    PubMed  PubMed Central  Google Scholar 

  • Żelechowska P, Agier J, Brzezińska-Błaszczyk E (2016) Endogenous antimicrobial factors in the treatment of infectious diseases. Cent Eur J Immunol 41(4):419–425

    Article  PubMed  Google Scholar 

  • Zhang L, Rybczynski J, Langenberg W, Mitra A, French RJ (2000) An efficient wheat transformation procedure: transformed calli with long-term morphogenic potential for plant regeneration. Plant Cell Rep 19:241–250

    Article  CAS  PubMed  Google Scholar 

  • Zhang LJ, Gallo RL (2016) Antimicrobial peptides. Curr Biol 26:R1–R21

    Article  Google Scholar 

  • Zhang M, Wei W, Sun Y, Jiang X, Ying X, Tao R, Ni L (2016) Pleurocidin congeners demonstrate activity against Streptococcus and low toxicity on gingival fibroblasts. Arch Oral Biol 70:79–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge their respective institutions for encouragement and support.

Conflict of Interests

No conflict of interests was declared.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, P., Srivastava, Y., Kumar, V. (2022). Antimicrobial Peptides as Effective Agents Against Drug-Resistant Pathogens. In: Kumar, V., Shriram, V., Paul, A., Thakur, M. (eds) Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-3120-7_11

Download citation

Publish with us

Policies and ethics